The boundary of the Mandelbrot set has Hausdorff dimension two
Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 389-405.
@incollection{AST_1994__222__389_0,
     author = {Shishikura, Mitsuhiro},
     title = {The boundary of the {Mandelbrot} set has {Hausdorff} dimension two},
     booktitle = {Complex analytic methods in dynamical systems - IMPA, January 1992},
     editor = {Camacho C. and Lins Neto A. and Moussu R. and Sad P.},
     series = {Ast\'erisque},
     pages = {389--405},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {222},
     year = {1994},
     mrnumber = {1285397},
     zbl = {0813.58047},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__222__389_0/}
}
TY  - CHAP
AU  - Shishikura, Mitsuhiro
TI  - The boundary of the Mandelbrot set has Hausdorff dimension two
BT  - Complex analytic methods in dynamical systems - IMPA, January 1992
AU  - Collectif
ED  - Camacho C.
ED  - Lins Neto A.
ED  - Moussu R.
ED  - Sad P.
T3  - Astérisque
PY  - 1994
SP  - 389
EP  - 405
IS  - 222
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1994__222__389_0/
LA  - en
ID  - AST_1994__222__389_0
ER  - 
%0 Book Section
%A Shishikura, Mitsuhiro
%T The boundary of the Mandelbrot set has Hausdorff dimension two
%B Complex analytic methods in dynamical systems - IMPA, January 1992
%A Collectif
%E Camacho C.
%E Lins Neto A.
%E Moussu R.
%E Sad P.
%S Astérisque
%D 1994
%P 389-405
%N 222
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1994__222__389_0/
%G en
%F AST_1994__222__389_0
Shishikura, Mitsuhiro. The boundary of the Mandelbrot set has Hausdorff dimension two, dans Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 389-405. http://www.numdam.org/item/AST_1994__222__389_0/

[B] Beardon, A. F., Iteration of Rational Functions, Springer Verlag, 1991. | MR | Zbl

[DH1] Douady, A. and Hubbard, J. H., Étude dynamique des polynômes complexes, Publ. Math. d'Orsay, 1er partie, 84-02 ; 2me partie, 85-04. | Zbl

[DH2] Douady, A. and Hubbard, J. H., On the dynamics of polynomial-like mappings, Ann. sient. Ec. Norm. Sup., 4e série, 18 (1985), p. 287-343. | DOI | EuDML | Numdam | MR | Zbl

[La] Lavaurs, P., Systèmes dynamiques holomorphes: explosion de points periodiques paraboliques, Thèse de doctrat de l'Université de Paris-Sud, Orsay, France, 1989.

[Ma] Mandelbrot, B., On the dynamics of Iterated maps V : Conjecture that the boundary of the M-set has a fractal dimension equal to 2, p. 235-238, Choas, Fractals and Dynamics, Eds. Fischer and Smith, Marcel Dekker, 1985. | MR | Zbl

[Mc1] Mcmullen, C., Area and Hausdorff dimension of Julia sets of entire functions, Trans. AMS, 300 (1987) p.329-342. | DOI | MR | Zbl

[Mc2] Mcmullen, C., Geometric limits: from hyperbolic 3-manifolds to the boundary of the Mandelbrot set, in the Proceedings of the Conference: Topological Methods in Modern Mathematics, June 1991, Stony Brook.

[Mi] Milnor, J., Dynamics in one complex variables: Introductory lectures, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1990. | MR | Zbl

[MSS] Mañé, R., Sad, P., and Sullivan, D., On the dynamics of rational maps, Ann. scient. Ec. Norm. Sup., (4) 16 (1983) p.193-217. | DOI | EuDML | Numdam | MR | Zbl

[Sh] Shishikura, M., The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1991. | MR | Zbl

[T] Tan Lei, Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., 134 (1990) p.587-617. | DOI | MR | Zbl