Appendix: Coxeter groups and unipotent representations
Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig, Astérisque, no. 212 (1993), pp. 191-203.
@incollection{AST_1993__212__191_0,
     author = {Lusztig, George},
     title = {Appendix: {Coxeter} groups and unipotent representations},
     booktitle = {Repr\'esentations unipotentes g\'en\'eriques et blocs des groupes r\'eductifs finis - Avec un appendice de George Lusztig},
     series = {Ast\'erisque},
     pages = {191--203},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {212},
     year = {1993},
     language = {en},
     url = {http://www.numdam.org/item/AST_1993__212__191_0/}
}
TY  - CHAP
AU  - Lusztig, George
TI  - Appendix: Coxeter groups and unipotent representations
BT  - Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig
AU  - Collectif
T3  - Astérisque
PY  - 1993
SP  - 191
EP  - 203
IS  - 212
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1993__212__191_0/
LA  - en
ID  - AST_1993__212__191_0
ER  - 
%0 Book Section
%A Lusztig, George
%T Appendix: Coxeter groups and unipotent representations
%B Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig
%A Collectif
%S Astérisque
%D 1993
%P 191-203
%N 212
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1993__212__191_0/
%G en
%F AST_1993__212__191_0
Lusztig, George. Appendix: Coxeter groups and unipotent representations, dans Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig, Astérisque, no. 212 (1993), pp. 191-203. http://www.numdam.org/item/AST_1993__212__191_0/

[1] D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebras of type H 4 , J. für reine und angew. Math. 336 (1982), 201-212.

[2] N. Bourbaki, Goupes et algèbres de Lie, Ch. 4, 5 et 6, Hermann, 1968.

[3] M. Broué, G. Malle and J. Michel, Generic blocks of finite reductive groups, This issue (1993), 7-91.

[4] M. Broué and G. Malle, Zyklotomische Heckealgebren, This issue (1993), 119-191.

[5] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.

[6] W. Feit and G. Higman, The non-existence of generalized polygons, J. Algebra 1 (1964), 114-131.

[7] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.

[8] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976), 101-159.

[9] G. Lusztig, Representations of finite Chevalley groups, Regional Conf. Series in Math. 39, Amer. Math. Soc., 1978.

[10] G. Lusztig, Unipotent representations of a finite Chevalley group of type E 8 , Quart. J. Math. Oxford 30 (1979), 315-338.

[11] G. Lusztig, A class of irreducible representations of a Weyl group II, Proc. Kon. Nederl. Akad. (A) 85 (1982), 219-226.

[12] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton U. Press, 1984.

[13] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159-193.