Congruence subgroup problem for algebraic groups: old and new
Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 73-84.
@incollection{AST_1992__209__73_0,
     author = {Rapinchuk, A. S.},
     title = {Congruence subgroup problem for algebraic groups: old and new},
     booktitle = {Journ\'ees arithm\'etiques de Gen\`eve - 9-13 septembre 1991},
     editor = {Coray D. F. and P\'etermann Y.-F. S},
     series = {Ast\'erisque},
     pages = {73--84},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {209},
     year = {1992},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__209__73_0/}
}
TY  - CHAP
AU  - Rapinchuk, A. S.
TI  - Congruence subgroup problem for algebraic groups: old and new
BT  - Journées arithmétiques de Genève - 9-13 septembre 1991
AU  - Collectif
ED  - Coray D. F.
ED  - Pétermann Y.-F. S
T3  - Astérisque
PY  - 1992
SP  - 73
EP  - 84
IS  - 209
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1992__209__73_0/
LA  - en
ID  - AST_1992__209__73_0
ER  - 
%0 Book Section
%A Rapinchuk, A. S.
%T Congruence subgroup problem for algebraic groups: old and new
%B Journées arithmétiques de Genève - 9-13 septembre 1991
%A Collectif
%E Coray D. F.
%E Pétermann Y.-F. S
%S Astérisque
%D 1992
%P 73-84
%N 209
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1992__209__73_0/
%G en
%F AST_1992__209__73_0
Rapinchuk, A. S. Congruence subgroup problem for algebraic groups: old and new, dans Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 73-84. http://www.numdam.org/item/AST_1992__209__73_0/

[1] H. Bass, M. Lazard & J-P. Serre, Sous-groupes d'indices finis dans SL(n,), Bull. Amer. Math. Soc., 70 (1964), 385-392.

[2] H. Bass, J. Milnor & J-P. Serre, Solution of the congruence subgroup problem for SL n (n3) and Sp n (n2), Publ. Math. IHES, 33 (1967), 54-137.

[3] D. Carter & G. Keller, Bounded elementary generation of S L n ( 𝒪 ) , Amer. J. Math., 105 (1983), 673-687.

[4] V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386.

[5] J. D. Dixon, M. P. F. Du Sautoy, A. Mann & D. Segal, Analytic pro- p -Groups, London Math. Soc. Lecture Note Series, No. 157, Cambridge Univ. Press, 1991.

[6] M. Kneser, Normalteiler ganzzahliger Spingruppen, J. reine und angew. Math., 311/312 (1979), 191-214.

[7] M. Lazard, Groupes analytiques p -adiques, Publ. Math. IHES, 26 (1965), 389-603.

[8] G. A. Margulis, Finiteness of factor groups of discrete groups, Funct. Anal. and Appl., 13 (1979), 28-39 (in Russian).

[9] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Ecole Norm. Sup., (4) 2 (1969), 1-62.

[10] J. Mennicke, Finite factor groups of the unimodular group, Ann. of Math., 81 (1965), 31-37.

[11] J. Mennicke, On Ihara's modular group, Invent. Math., 4 (1967), 202-228.

[12] C. Moore, Group extensions of p -adic and adelic groups, Publ. Math. IHES, 35 (1968), 5-70.

[13] V. P. Platonov, Arithmetic and structural problems for linear algebraic groups, Proc. Intern. Congr. Math. Vancouver 1974, vol. 1 (1975), 471-476 (in Russian).

[14] V. P. Platonov & A. S. Rapinchuk, Algebraic groups and number theory, Moscow, Nauka, 1991 (in Russian; English translation is being prepared by Academic Press).

[15] V. P. Platonov & A. S. Rapinchuk, Abstract characterizations of arithmetic groups with the congruence subgroup property, Dokl. Akad. Nauk SSSR, 319 (1991), No. 6 (in Russian).

[16] G. Prasad, A variant of a theorem of Calvin Moore, C.R. Acad. Sci., 302 (1986), 405-408.

[17] G. Prasad & M. S. Raghunathan, On the congruence subgroup problem: Determination of the "Metaplectic kernel", Invent. Math., 71 (1983), 21-42.

[18] M. S. Raghunathan, On the congruence subgroup problem, Publ. Math. IHES, 46 (1976), 107-161.

[19] M. S. Raghunathan, On the congruence subgroup problem II, Invent. Math., 85 (1986), 73-117.

[20] A. S. Rapinchuk, Multiplicative arithmetic of division algebras over number fields and metaplectic problem, Izv. Akad. Nauk SSSR, Ser. Mat., 51 (1987), 1033-1064 (in Russian).

[21] A. S. Rapinchuk, Congruence subgroup problem for algebraic groups and strong approximation in affine varieties, Dokl. Akad. Nauk BSSR, 32 (1988), 581-584 (in Russian).

[22] A. S. Rapinchuk, On the congruence subgroup problem for algebraic groups, Dokl. Akad. Nauk SSSR, 306 (1989), 1304-1307 (in Russian).

[23] A. S. Rapinchuk, The congruence subgroup problem for algebraic groups, Topics in algebra, Banach center publ., vol. 26, part 2 (1990), 399-410.

[24] A. S. Rapinchuk, The congruence subgroup problem for arithmetic groups with bounded generation, Dokl. Akad. Nauk SSSR, 314 (1990), 1327-1331 (in Russian).

[25] A. S. Rapinchuk, Representations of groups with bounded generation, Dokl. Akad. Nauk SSSR, 315 (1990), 536-540 (in Russian).

[26] A. S. Rapinchuk, Combinatorial theory of arithmetic groups, Preprint of the Institute of Mathematics of the Byelorussian Acad. Sci., No. 20 (420) (1990).

[27] J-P. Serre, Le problème des groupes de congruence pour SL 2 , Ann. of Math., 92 (1970), 489-527.

[28] O. I. Tavgen', Bounded generation of Chevalley groups over the rings of S-integers, Izv. Akad. Nauk SSSR, Ser. Mat., 54 (1990), 97-122 (in Russian).

[29] G. Tomanov, On the congruence subgroup problem for some anisotropic algebraic groups over number fields, J. reine und angew. Math., 402 (1989), 138-152.

[30] G. Tomanov, Remarques sur la structure des groupes algébriques définis sur des corps de nombres, C.R. Acad. Sci., 310 (1990), 33-36.

[31] E. I. Zel'Manov, The solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad. Nauk SSSR., Ser. Mat., 54 (1990) (in Russian).