L-Functoriality for dual pairs
Orbites unipotentes et représentations - II. Groupes p-adiques et réels, Astérisque, no. 171-172 (1989), pp. 85-129.
@incollection{AST_1989__171-172__85_0,
     author = {Adams, Jeffrey},
     title = {$L${-Functoriality} for dual pairs},
     booktitle = {Orbites unipotentes et repr\'esentations - II. Groupes $p$-adiques et r\'eels},
     series = {Ast\'erisque},
     pages = {85--129},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {171-172},
     year = {1989},
     mrnumber = {1021501},
     zbl = {0715.22016},
     language = {en},
     url = {http://www.numdam.org/item/AST_1989__171-172__85_0/}
}
TY  - CHAP
AU  - Adams, Jeffrey
TI  - $L$-Functoriality for dual pairs
BT  - Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels
AU  - Collectif
T3  - Astérisque
PY  - 1989
SP  - 85
EP  - 129
IS  - 171-172
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1989__171-172__85_0/
LA  - en
ID  - AST_1989__171-172__85_0
ER  - 
%0 Book Section
%A Adams, Jeffrey
%T $L$-Functoriality for dual pairs
%B Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels
%A Collectif
%S Astérisque
%D 1989
%P 85-129
%N 171-172
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1989__171-172__85_0/
%G en
%F AST_1989__171-172__85_0
Adams, Jeffrey. $L$-Functoriality for dual pairs, dans Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels, Astérisque, no. 171-172 (1989), pp. 85-129. http://www.numdam.org/item/AST_1989__171-172__85_0/

[1] J. Adams, "Discrete Spectrum of the Dual Pair (O(p,q),Sp(2m,))", Invent, math. 74 (1983), pp. 449-475. | DOI | EuDML | MR | Zbl

[2] J. Adams, "Coadjoint Orbits and Reductive Dual Pairs", Adv. in Math. 63 (1987), pp. 138-151. | DOI | MR | Zbl

[3] J. Adams, "Unitary Highest Weight Modules", Adv. in Math. 63 (1987), pp. 113-137. | DOI | MR | Zbl

[4] J. Adams and J. Johnson, "Endoscopic Groups and Stable Packets of Non-Tempered Representations", Comp. Math. 64 (1987), pp. 271-309. | EuDML | Numdam | MR | Zbl

[5] J. Adams and D. Vogan, "Harish-Chandra's Method of Descent", submitted to Duke Math. | MR | Zbl

[6] J. Adams and D. Vogan, "L-Groups, Projective Representations, and the Langlands Classification", preprint. | DOI | MR | Zbl

[7] J. Arthur, "On Some Problems Suggested By the Trace Formula", in Lie Group Representations II, Proceedings, University of Maryland, pp. 1-49, Springer, New York, 1983. | MR | Zbl

[8] A. Borel, "Automorphic L-Functions" in Proceedings of Symposia in Pure Mathematics, Vol. 33 (1979) part 2, pp. 27-61. | DOI | MR | Zbl

[9] D. Barbasch and D. Vogan, "Unipotent Representations of Complex Semisimple Groups", Annals of Math., 121 (1985), pp. 41-110. | DOI | MR | Zbl

[10] T. Enright, R. Howe, and N. Wallach, "A Classification of Unitary Highest Weight Modules", in Representation Theory of Reductive Groups, (P. Trombi Ed.), pp. 97-144, Birkhause, Boston, 1983. | DOI | MR | Zbl

[11] R. Howe, "Transcending Classical Invariant Theory", preprint. | MR | Zbl

[12] R. Howe, "L 2 -Duality for Stable Dual Pairs", preprint.

[13] R. Howe, "Wave Front Sets of Representations of Lie Groups", in Automorphic Forms, Representation Theory, and Arithmetic, Tata Inst. Fund. Res. Studies in Math. 10, Tata Inst. Fund. Res., Bombay, 1981. | DOI | MR | Zbl

[14] R. Howe, "Reciprocity Laws in the Theory of Dual Pairs", in Representation Theory of Reductive Groups, Proceedings of the Univ. of Utah Conference, 1982, P. Trombi ed., Birkhauser, Boston (1983). | DOI | MR | Zbl

[15] R. Howe and I. Piatetski-Shapiro, "A Counterexample to the "Generalized Ramanujan Conjecture" fro (Quasi)-split Groups", in Proceedings of Symposia in Pure Mathematics, Vol. 33 (1979) part 1, pp. 315-322. | MR | Zbl

[16] S. Kudla, "On the Local Theta Correspondence", Inv. Math. 83, (1986), pp. 229-255. | DOI | EuDML | MR | Zbl

[17] S. Kudla and S. Rallis, "Degenerate Principal Series and Invariant Distributions", preprint. | DOI | MR | Zbl

[18] M. Kashiwara and M. Vergne, "On the Segal-Shale-Weil Representations and Harmonic Polynomials", Invent. Math. 44 (1978), pp. 1-47. | DOI | EuDML | MR | Zbl

[19] R. Langlands, "Letter from R, Langlands to R. Howe", unpublished.

[20] R. Langlands, "On the Classification of Irreducible Representations of Real Algebraic Groups", mimeograph notes, Princeton, (1973). | Zbl

[21] C. Moeglin, "Correspondance de Howe pour les paires réductives duales, quelques calculs dans le cas archimédien", preprint. | DOI | MR | Zbl

[22] J. Repka, "Tensor products of holomorphic discrete series", Can. J. Math. XXXI, no. 4 (1979), pp. 836-844. | DOI | MR | Zbl

[23] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel. Lecture Notes in Math 946, Springer, New York, 1982. | MR | Zbl

[24] D. Vogan, Representations of real reductive groups. Birkhauser, Boston, 1981. | MR | Zbl

[25] D. Vogan, "The unitary dual of GL(n) over an archimedean field", Invent. Math. 83 (1986), pp. 449-505. | DOI | EuDML | MR | Zbl

[26] D. Vogan, Unitary representations of reductive Lie groups. Annals of Math Studies, 118, Princeton University Press, Princeton (1987). | MR | Zbl

[27] D. Vogan and G. Zuckerman, "Unitary representations with non-zero cohomology", Comp. Math. 53 (1984). pp. 51-90. | EuDML | Numdam | MR | Zbl

[28] G. Zuckerman, "Tensor products of finite and Infinite dimensional representation of semisimple Lie groups", Ann. of Math. 106 (1977), pp. 295-308. | DOI | MR | Zbl