@incollection{AST_1989__171-172__73_0, author = {Lusztig, George}, title = {Representations of affine {Hecke} algebras}, booktitle = {Orbites unipotentes et repr\'esentations - II. Groupes $p$-adiques et r\'eels}, series = {Ast\'erisque}, pages = {73--84}, publisher = {Soci\'et\'e math\'ematique de France}, number = {171-172}, year = {1989}, mrnumber = {1021500}, zbl = {0699.22027}, language = {en}, url = {https://www.numdam.org/item/AST_1989__171-172__73_0/} }
TY - CHAP AU - Lusztig, George TI - Representations of affine Hecke algebras BT - Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels AU - Collectif T3 - Astérisque PY - 1989 SP - 73 EP - 84 IS - 171-172 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1989__171-172__73_0/ LA - en ID - AST_1989__171-172__73_0 ER -
%0 Book Section %A Lusztig, George %T Representations of affine Hecke algebras %B Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels %A Collectif %S Astérisque %D 1989 %P 73-84 %N 171-172 %I Société mathématique de France %U https://www.numdam.org/item/AST_1989__171-172__73_0/ %G en %F AST_1989__171-172__73_0
Lusztig, George. Representations of affine Hecke algebras, dans Orbites unipotentes et représentations - II. Groupes $p$-adiques et réels, Astérisque, no. 171-172 (1989), pp. 73-84. https://www.numdam.org/item/AST_1989__171-172__73_0/
1. Induced representations of reductive
2. Admissible representations of a semisimple group over a local field with fixed vectors under an Iwahori subgroup. Invent. Math. 35 (1976), 233-259. | DOI | EuDML | MR | Zbl
,3. Homology of the zero set of a nilpotent vector field on a flag manifold, J. of Amer. Math. Soc. 1 (1988). | DOI | MR | Zbl
, , ,4. Lagrangian construction for representations of Hecke algebras. Adv. in Math. 63 (1987), 100-112. | DOI | MR | Zbl
,5. On some Brunat decomposition and the structure of Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 237-280. | DOI | Numdam | MR | Zbl
, ,6. A realization of the irreductible representations of affine Weyl groups, Proc. Kon. Nederl. Akad. A. 86 (1983), 193-201. | MR | Zbl
,7. Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. | DOI | EuDML | MR | Zbl
, ,
8. Equivariant
9. Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87 (1987), 153-215. | DOI | EuDML | MR | Zbl
, ,
10. Some examples of square integrable representations of semisimple
11. Equivariant
12. Cells in affine Weyl groups, in Algebraic groups and related topics, Hotta R. (ed) Advanded Studies in Pure Math. vol. 6, Kinokunia and North Holland 1985 ; | DOI | MR | Zbl
,Cells in affine Weyl groups, in Algebraic groups and related topics, Hotta R. (ed) II J. of Alg. 109 (1987), 536-548 ; | MR | Zbl
,Cells in affine Weyl groups, in Algebraic groups and related topics, Hotta R. (ed) III J. Fac. Sci. Tokyo Univ. A (1987).
,13. Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lectures Notes in Math. 590, Springer Verlag, 1977. | MR | Zbl
,14. Linear Algebraic Groups, Birkhaüser, Boston-Basel-Stuttgart 1981. | Zbl
,
15. Induced representations of reductive