@incollection{AST_1987__154-155__95_0, author = {O'Shea, Donal B.}, title = {The {Bernstein-Osserman-Xavier} theorems}, booktitle = {Th\'eorie des vari\'et\'es minimales et applications}, series = {Ast\'erisque}, pages = {95--113}, publisher = {Soci\'et\'e math\'ematique de France}, number = {154-155}, year = {1987}, mrnumber = {955061}, zbl = {0635.53036}, language = {en}, url = {http://www.numdam.org/item/AST_1987__154-155__95_0/} }
TY - CHAP AU - O'Shea, Donal B. TI - The Bernstein-Osserman-Xavier theorems BT - Théorie des variétés minimales et applications AU - Collectif T3 - Astérisque PY - 1987 SP - 95 EP - 113 IS - 154-155 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1987__154-155__95_0/ LA - en ID - AST_1987__154-155__95_0 ER -
%0 Book Section %A O'Shea, Donal B. %T The Bernstein-Osserman-Xavier theorems %B Théorie des variétés minimales et applications %A Collectif %S Astérisque %D 1987 %P 95-113 %N 154-155 %I Société mathématique de France %U http://www.numdam.org/item/AST_1987__154-155__95_0/ %G en %F AST_1987__154-155__95_0
O'Shea, Donal B. The Bernstein-Osserman-Xavier theorems, dans Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 95-113. http://www.numdam.org/item/AST_1987__154-155__95_0/
[1] Riemann surfaces, Princeton University Press, Princeton, New Jersey, 1960. | DOI | MR
and ,[2] Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. Math. 84 (1966), 277-292. | DOI | MR | Zbl
,[3] Sur un théorème de géométrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. de la Soc. Math. de Kharkov (2ème série) 15 (1915-17), 38-45. | JFM
,[4] Minimal cones and the Bernstein problem, Inventiones Math. 7 (1969), 243-268. | DOI | EuDML | MR | Zbl
, and ,[5] An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771-782. | DOI | MR | Zbl
,[6] Minimal surfaces in a Euclidean space of dimensions, in Differential and Combinatorial Topology, Symposium in honor of Marston Morse, Princeton University Press, Princeton, 1965, 187-198. | MR | Zbl
,[7] Complete minimal surfaces in Euclidean -space, J. Anal. Math. 19 (1967), 15-34. | DOI | MR | Zbl
and ,[8] Una estensione del teorema di Bernstein, Ann. Sc. Norm. Pisa 19 (1965), 79-85. | EuDML | MR | Zbl
,[9] On the oriented Plateau problem, Rend. Circ. Mat. Palermo 2 (1962), 1-22. | MR | Zbl
,[10] Meromorphic functions, Oxford Mathematical Monographs, 1964. | MR | Zbl
,[11] The geometry of the generalized Gauss map, Memoirs of the Amer. Math. Soc. 28, 236 (1980). | DOI | MR | Zbl
and ,[12] Lectures on minimal submanifolds, vol. 1, Publish or Perish Inc., Berkeley, 1980 (reprinted from IMPA (1973)). | MR | Zbl
,[13] this volume.
,[14] Proof of a conjecture of Nirenberg, Comm. Pure Appl. Math. 12 (1959), 229-232. | DOI | MR | Zbl
,[15] Minimal surfaces in the large, Comment. Math. Helv. 35 (1961), 65-76. | DOI | EuDML | MR | Zbl
,[16] Global properties of minimal surfaces in and , Ann. Math. 2, 80 (1964), 340-364. | DOI | MR | Zbl
,[17] A survey of minimal surfaces, Van Nostrand, New York, 1969. | MR | Zbl
,[18] Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 275-288. | DOI | MR | Zbl
, and ,[19] Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62-105. | DOI | MR | Zbl
,[20] Über vollständige Minimalflächen, L'Enseignement Math. 10 (1964), 316-317.
,[21] The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere, Ann. Math. 113 (1981), 211-214. | DOI | MR | Zbl
,[22] Erratum to the Daper "The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere", Ann. Math. 115 (1982), 667. | DOI | MR | Zbl
,[23] Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana U. Math. J. 25 (1976), 659-670. | DOI | MR | Zbl
,