La classification des 2-sphères minimales dans l'espace projectif complexe
Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 131-149.
@incollection{AST_1987__154-155__131_0,
     author = {Jun. Lawson, H.Blaine},
     title = {La classification des $2$-sph\`eres minimales dans l'espace projectif complexe},
     booktitle = {Th\'eorie des vari\'et\'es minimales et applications},
     series = {Ast\'erisque},
     pages = {131--149},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {154-155},
     year = {1987},
     mrnumber = {955063},
     zbl = {0635.53038},
     language = {fr},
     url = {http://www.numdam.org/item/AST_1987__154-155__131_0/}
}
TY  - CHAP
AU  - Jun. Lawson, H.Blaine
TI  - La classification des $2$-sphères minimales dans l'espace projectif complexe
BT  - Théorie des variétés minimales et applications
AU  - Collectif
T3  - Astérisque
PY  - 1987
SP  - 131
EP  - 149
IS  - 154-155
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1987__154-155__131_0/
LA  - fr
ID  - AST_1987__154-155__131_0
ER  - 
%0 Book Section
%A Jun. Lawson, H.Blaine
%T La classification des $2$-sphères minimales dans l'espace projectif complexe
%B Théorie des variétés minimales et applications
%A Collectif
%S Astérisque
%D 1987
%P 131-149
%N 154-155
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1987__154-155__131_0/
%G fr
%F AST_1987__154-155__131_0
Jun. Lawson, H.Blaine. La classification des $2$-sphères minimales dans l'espace projectif complexe, dans Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 131-149. http://www.numdam.org/item/AST_1987__154-155__131_0/

[1] D. Burns, Harmonic maps from P l to P n , in Harmonic maps Symposium, New- Orleans (1980), | Zbl

D. Burns, Harmonic maps from P l to P n Lect. Notes in Math 949 Springer (1982), 48-55. | Zbl

[2] E. Calabi, Quelques applications de l'analyse complexe aux surfaces d'aire minima, in Topics in complex manifolds (Ed. H. Rossi), Les presses de l'Université de Montréal (1967), 59-81.

[3] E. Calabi, Minimal immersions of surfaces in euclidean spheres, J. Differential Geom. 1 (1967), 111-125. | DOI | MR | Zbl

[4] S. S. Chern, S. I. Goldberg, On the volume decreasing property of a classe of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147. | DOI | MR | Zbl

[5] S. S. Chern, J. Wolfson, Minimal surface by moving frames, Amer. J. Math. 105 (1983), 59-83. | DOI | MR | Zbl

[6] A. M. Din, W. J. Zakrewski, General classical solutions in the P n-l model, Nucl. Phy. B 174 (1980) 397-406. | DOI | MR

[7] A. M. Din, W. J. Zakrewski, Properties of the general classical P n-l model, Phys. Letters 95 B (1980) 419-422. | MR

[8] V. Glaser, R. Stora, Regular solutions of the P n models and further generalization, CERN preprint. 1980.

[9] J. Eells, J. C. Wood, The existence and construction of certain harmonic maps, Symp. Math. Ist. Naz. Alta Mat. Roma 26 (1982), 123-138. | MR | Zbl

[10] J. Eells, J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. Math 49 (1983), 217-263. | DOI | MR | Zbl

[11] H. B. Lawson Jr., Surfaces minimales et la construction de Calabi-Penrose, in Séminaire Bourbaki n°624, 1983/84, Astérisque 121-122, Soc. Math. France, 1985, pp.197-212. | EuDML | Numdam | MR | Zbl

H. B. Lawson Jr., Surfaces minimales et la construction de Calabi-Penrose Soc. Math. France, 1985, pp.197-212. | EuDML | Numdam | MR | Zbl

[12] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 459-469. | DOI | MR | Zbl

[13] J. Wolfson, On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. A.M.S. 290 (1985), 627-646. | MR | Zbl