Introduction aux matrices aléatoires
Journées mathématiques X-UPS, Aléatoire (2013), pp. 93-129.

En concevant les mathématiques comme un graphe, où chaque sommet est un domaine, la théorie des probabilités et l’algèbre linéaire figurent parmi les sommets les plus connectés aux autres. Or leur réunion constitue le cœur de la théorie des matrices aléatoires. Cela explique peut-être la richesse exceptionnelle de cette théorie très actuelle. Les aspects non linéaires de l’algèbre linéaire y jouent un rôle profond et fascinant. Ces notes en présentent quelques aspects.

Publié le :
DOI : 10.5802/xups.2013-03
Chafaï, Djalil 1

1 LAMA, CNRS UMR 8050, Université de Paris-Est Marne-la-Vallée, 5, boulevard Descartes, 77454 Marne-la-Vallée cedex 2
@incollection{XUPS_2013____93_0,
     author = {Chafa{\"\i}, Djalil},
     title = {Introduction aux matrices al\'eatoires},
     booktitle = {Al\'eatoire},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {93--129},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2013},
     doi = {10.5802/xups.2013-03},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/xups.2013-03/}
}
TY  - JOUR
AU  - Chafaï, Djalil
TI  - Introduction aux matrices aléatoires
JO  - Journées mathématiques X-UPS
PY  - 2013
SP  - 93
EP  - 129
PB  - Les Éditions de l’École polytechnique
UR  - http://www.numdam.org/articles/10.5802/xups.2013-03/
DO  - 10.5802/xups.2013-03
LA  - fr
ID  - XUPS_2013____93_0
ER  - 
%0 Journal Article
%A Chafaï, Djalil
%T Introduction aux matrices aléatoires
%J Journées mathématiques X-UPS
%D 2013
%P 93-129
%I Les Éditions de l’École polytechnique
%U http://www.numdam.org/articles/10.5802/xups.2013-03/
%R 10.5802/xups.2013-03
%G fr
%F XUPS_2013____93_0
Chafaï, Djalil. Introduction aux matrices aléatoires. Journées mathématiques X-UPS, Aléatoire (2013), pp. 93-129. doi : 10.5802/xups.2013-03. http://www.numdam.org/articles/10.5802/xups.2013-03/

[ABDF11] The Oxford handbook of random matrix theory (Akemann, Gernot; Baik, Jinho; Di Francesco, Philippe, eds.), Oxford University Press, Oxford, 2011 | MR | Zbl

[AGZ10] Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer An introduction to random matrices, Cambridge Studies in Advanced Math., 118, Cambridge University Press, Cambridge, 2010 | MR

[BC12] Bordenave, Charles; Chafaï, Djalil Around the circular law, Probab. Surv., Volume 9 (2012), pp. 1-89 | DOI | MR | Zbl

[Bha97] Bhatia, Rajendra Matrix analysis, Graduate Texts in Math., 169, Springer-Verlag, New York, 1997 | DOI | MR

[Bia03] Biane, Philippe La fonction zêta de Riemann et les probabilités, La fonction zêta (Journées X-UPS), Volume 2022, Les Éditions de l’École polytechnique, Palaiseau, 2003, pp. 165-193 | DOI | MR

[Bia04] Biane, Philippe Probabilités libres et matrices aléatoires, Images des mathématiques (2004) https://images.math.cnrs.fr/pdf2004/Biane.pdf

[BS10] Bai, Zhidong; Silverstein, Jack W. Spectral analysis of large dimensional random matrices, Springer Series in Statistics, Springer, New York, 2010 | DOI | MR

[CD11] Couillet, Romain; Debbah, Mérouane Random matrix methods for wireless communications, Cambridge University Press, Cambridge, 2011 | DOI | MR

[CGLP12] Chafaï, Djalil; Guédon, Olivier; Lecué, Guillaume; Pajor, Alain Interactions between compressed sensing random matrices and high dimensional geometry, Panoramas & Synthèses, 37, Société Mathématique de France, Paris, 2012, 181 pages | MR

[Dal12] Dallaporta, S. Quelques aspects de l’étude quantitative de la fonction de comptage et des valeurs propres de matrices aléatoires, Ph. D. Thesis, Université de Toulouse (2012) https://theses.fr/2012TOU30181

[Dei99] Deift, Percy A. Orthogonal polynomials and random matrices : a Riemann-Hilbert approach, Courant Lecture Notes in Math., 3, American Mathematical Society, Providence, RI, 1999 | MR

[DG09] Deift, Percy A.; Gioev, Dimitri Random matrix theory : invariant ensembles and universality, Courant Lecture Notes in Math, 18, American Mathematical Society, Providence, RI, 2009 | DOI | MR

[EK12] Compressed sensing (Eldar, Yonina C.; Kutyniok, Gitta, eds.), Cambridge University Press, Cambridge, 2012 (Theory and applications) | DOI | MR

[ER05] Edelman, Alan; Rao, N. Raj Random matrix theory, Acta Numer., Volume 14 (2005), pp. 233-297 | DOI | MR | Zbl

[Erd11] Erdős, L. Universality of Wigner random matrices : a survey of recent results, Russ. Math. Surv., Volume 66 (2011) no. 3, pp. 507-626 | DOI | Zbl

[For10] Forrester, P. J. Log-gases and random matrices, London Math. Soc. Monographs, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR

[Gui09] Guionnet, Alice Large random matrices : lectures on macroscopic asymptotics, Lect. Notes in Math., 1957, Springer-Verlag, Berlin, 2009 (Lectures from the 36th Probability Summer School held in Saint-Flour, 2006) | DOI | MR

[Gui11] Guionnet, Alice Grandes matrices aléatoires et théorèmes d’universalité (d’après Erdős, Schlein, Tao, Vu et Yau), Séminaire Bourbaki, Vol. 2009/2010 (Astérisque), Volume 339, Société Mathématique de France, Paris, 2011, pp. 203-237 (Exp. No. 1019) | Numdam | MR | Zbl

[HJ13] Horn, Roger A.; Johnson, Charles R. Matrix analysis, Cambridge University Press, Cambridge, 2013 | MR

[HP00] Hiai, Fumio; Petz, Dénes The semicircle law, free random variables and entropy, Math. Surveys and Monographs, 77, American Mathematical Society, Providence, RI, 2000 | DOI | MR

[Led04] Ledoux, M. Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials. The continuous case, Electron. J. Probab., Volume 9 (2004), pp. 177-208 | DOI | MR | Zbl

[McD89] McDiarmid, Colin On the method of bounded differences, Surveys in combinatorics, 1989 (Norwich, 1989) (London Math. Soc. Lecture Note Ser.), Volume 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148-188 | MR | Zbl

[Meh04] Mehta, Madan Lal Random matrices, Pure and Applied Math., 142, Elsevier/Academic Press, Amsterdam, 2004 | MR

[PS11] Pastur, Leonid; Shcherbina, Mariya Eigenvalue distribution of large random matrices, Math. Surveys and Monographs, 171, American Mathematical Society, Providence, RI, 2011 | DOI | MR

[Péc06] Péché, S. La plus grande valeur propre de matrices de covariance empirique, Images des mathématiques (2006) http://images.math.cnrs.fr/La-plus-grande-valeur-propre-de.html

[Tao12] Tao, Terence Topics in random matrix theory, Graduate Texts in Math., 132, American Mathematical Society, Providence, RI, 2012 | DOI | MR

[Tao13] Tao, Terence The asymptotic distribution of a single eigenvalue gap of a Wigner matrix, Probab. Theory Related Fields, Volume 157 (2013) no. 1-2, pp. 81-106 | DOI | MR | Zbl

[TV06] Tao, Terence; Vu, Van Additive combinatorics, Cambridge Studies in Advanced Math., 105, Cambridge University Press, Cambridge, 2006 | DOI | MR

Cité par Sources :