Jeux répétés
Journées mathématiques X-UPS, Théorie des jeux – Introduction à la théorie des jeux répétés (2006), pp. 23-43.
Publié le :
DOI : 10.5802/xups.2006-02
Tomala, Tristan 1

1 Ceremade, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16
@incollection{XUPS_2006____23_0,
     author = {Tomala, Tristan},
     title = {Jeux r\'ep\'et\'es},
     booktitle = {Th\'eorie des jeux {\textendash} Introduction \`a la th\'eorie des jeux r\'ep\'et\'es},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {23--43},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2006},
     doi = {10.5802/xups.2006-02},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/xups.2006-02/}
}
TY  - JOUR
AU  - Tomala, Tristan
TI  - Jeux répétés
JO  - Journées mathématiques X-UPS
PY  - 2006
SP  - 23
EP  - 43
PB  - Les Éditions de l’École polytechnique
UR  - http://www.numdam.org/articles/10.5802/xups.2006-02/
DO  - 10.5802/xups.2006-02
LA  - fr
ID  - XUPS_2006____23_0
ER  - 
%0 Journal Article
%A Tomala, Tristan
%T Jeux répétés
%J Journées mathématiques X-UPS
%D 2006
%P 23-43
%I Les Éditions de l’École polytechnique
%U http://www.numdam.org/articles/10.5802/xups.2006-02/
%R 10.5802/xups.2006-02
%G fr
%F XUPS_2006____23_0
Tomala, Tristan. Jeux répétés. Journées mathématiques X-UPS, Théorie des jeux – Introduction à la théorie des jeux répétés (2006), pp. 23-43. doi : 10.5802/xups.2006-02. http://www.numdam.org/articles/10.5802/xups.2006-02/

[AM95] Aumann, R.J.; Maschler, M. Repeated games with incomplete information, M.I.T. Press, 1995

[APS90] Abreu, D.; Pearce, D.; Stacchetti, E. Toward a theory of discounted repeated games with imperfect monitoring, Econometrica, Volume 58 (1990), pp. 1041-1063 | DOI | MR | Zbl

[AS94] Aumann, R.J.; Shapley, L.S. Long-term competition–A game theoretic analysis, Essays on game theory (Megiddo, N., ed.), Springer-Verlag, New-York, 1994, pp. 1-15 | Zbl

[Aum64] Aumann, R.J. Mixed and behaviour strategies in infinite extensive games, Advances in Game Theory (Dresher; Shapley; Tucker, eds.) (Annals of Math. Studies), Volume 52, Princeton University Press, Princeton, NJ, 1964, pp. 627-650 | Zbl

[BK85] Benoit, J-P.; Krishna, V. Finitely repeated games, Econometrica, Volume 53 (1985), pp. 905-922 | DOI | MR | Zbl

[BK87] Benoit, J-P.; Krishna, V. Nash equilibria of finitely repeated games, Internat. J. Game Theory, Volume 16 (1987), pp. 197-204 | DOI | MR | Zbl

[Bla56] Blackwell, D. An analog of the minmax theorem for vector payoffs, Pacific J. Math., Volume 65 (1956), pp. 1-8 | Zbl

[Bor21] Borel, É. La théorie du jeu et les équations intégrales à noyau symétrique gauche, C. R. Acad. Sci. Paris, Volume 173 (1921), pp. 1304-1308 | Zbl

[FL94] Fudenberg, D.; Levine, D.K. Efficiency and observability with long-run and short-run players, J. Econom. Theory, Volume 62 (1994), pp. 103-135 | DOI | MR | Zbl

[FLM94] Fudenberg, D.; Levine, D.K.; Maskin, E. The folk theorem with imperfect public information, Econometrica, Volume 62 (1994), pp. 997-1039 | DOI | MR | Zbl

[FM86] Fudenberg, D.; Maskin, E. The folk theorem in repeated games with discounting or with incomplete information, Econometrica, Volume 54 (1986), pp. 533-554 | DOI | MR | Zbl

[FMN86] Forges, F.; Mertens, J.-F.; Neyman, A. A counterexample to the Folk theorem with discounting, Econom. Lett., Volume 20 (1986), p. 7 | DOI | MR | Zbl

[FRSV06] Forges, F.; Renault, J.; Sorin, S.; Vieille, N. Théorie des jeux : le prix Nobel pour les travaux de R.J. Aumann, MATAPLI, Bulletin de liaison de la SMAI, Volume 79 (2006), pp. 47-70 | Zbl

[Gli52] Glicksberg, I. A further generalization of the Kakutani fixed point theorem, with applications to Nash equilibrium points, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 170-174 | MR | Zbl

[Gos95] Gossner, O. The folk theorem for finitely repeated games with mixed strategies, Internat. J. Game Theory, Volume 24 (1995), pp. 95-107 | DOI | MR | Zbl

[GT04] Gossner, O.; Tomala, T. Secret correlation in repeated games with signals, 2004 | HAL

[GT06] Gossner, O.; Tomala, T. Empirical distributions of beliefs under imperfect monitoring, Math. Oper. Res., Volume 31 (2006) no. 1, pp. 13-30 | DOI | Zbl

[Kak41] Kakutani, S. A generalization of Brouwer’s fixed point theorem, Duke Math. J., Volume 8 (1941), pp. 416-427 | DOI | MR | Zbl

[Koh75] Kohlberg, E. Optimal strategies in repeated games with incomplete information, Internat. J. Game Theory, Volume 4 (1975), pp. 7-24 | DOI | MR | Zbl

[Kuh53] Kuhn, H.W. Extensive games and the problem of information, Contributions to the Theory of Games, vol. II (Kuhn; Tucker, eds.) (Annals of Math. Studies), Volume 28, Princeton University Press, Princeton, NJ, 1953, pp. 193-216 | MR | Zbl

[Leh89] Lehrer, E. Nash equilibria of n player repeated games with semi-standard information, Internat. J. Game Theory, Volume 19 (1989), pp. 191-217 | DOI | MR | Zbl

[Leh92] Lehrer, E. Correlated equilibria in two-player repeated games with non-observable actions, Math. Oper. Res., Volume 17 (1992), pp. 175-199 | DOI | Zbl

[Mer86] Mertens, J.-F. Repeated games, Proc. International Congress of Mathematicians (Berkeley), American Mathematical Society, Providence, RI, 1986, pp. 1528-1577

[Mil56] Mills, H.D. Marginal value of matrix games and linear programs, Linear Inequalities and Related Systems (Kuhn; Tucker, eds.) (Annals of Math. Studies), Volume 38, Princeton University Press, Princeton, NJ, 1956, pp. 183-193 | MR | Zbl

[MSZ94] Mertens, J.-F.; Sorin, S.; Zamir, S. Repeated games, 1994, pp. 9420-9422 (CORE discussion paper)

[Mye91] Myerson, R. Game theory, Harvard University Press, 1991

[Nas50] Nash, J. Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U.S.A., Volume 36 (1950), pp. 48-49 | DOI | MR | Zbl

[OR94] Osborne, M.J.; Rubinstein, A. A course in game theory, M.I.T. Press, 1994

[RT98] Renault, J.; Tomala, T. Repeated proximity games, Internat. J. Game Theory, Volume 27 (1998), pp. 539-559 | DOI | MR | Zbl

[RT04] Renault, J.; Tomala, T. Communication equilibrium payoffs of repeated games with imperfect monitoring, Games Econom. Behav., Volume 49 (2004), pp. 313-344 | DOI | MR | Zbl

[Rub77] Rubinstein, A. Equilibrium in supergames, Research Memorandum, 25, Center for Research in Mathematical Economics and Game Theory, 1977

[Sha53] Shapley, L.S. Stochastic games, Proc. Nat. Acad. Sci. U.S.A., Volume 39 (1953), pp. 1095-1100 | DOI | MR | Zbl

[Sio58] Sion, M. On general minimax theorems, Pacific J. Math., Volume 8 (1958), pp. 171-176 | DOI | MR | Zbl

[Sor86] Sorin, S. On repeated games with complete information, Math. Oper. Res., Volume 11 (1986), pp. 147-160 | DOI | MR | Zbl

[Sor92] Sorin, S. Repeated games with complete information, Handbook of game theory, vol. I (Aumann, R.J.; Hart, S., eds.), Elsevier Science Publishers, 1992, pp. 71-107 | Zbl

[Sor02] Sorin, S. A first course on zero-sum repeated games, Mathématiques et Applications, Springer, 2002

[VD87] Van Damme, E. Stability and perfection of Nash equilibria, Springer, 1987 | DOI

[VN28] Von Neumann, J. Zur Theorie der Gesellschaftsspiele, Math. Ann., Volume 100 (1928), pp. 295-320 | DOI | MR | Zbl

[VNM44] Von Neumann, J.; Morgenstern, O. Games and economic behavior, Princeton University Press, Princeton, NJ, 1944

[Zer12] Zermelo, E. Über eine Anwendung der Mengenlehrer auf die Theorie des Schachspiels, Proceedings of the Fifth International Congress of Mathematicians (Cambridge), vol. II, 1912, p. 501 | Zbl

Cité par Sources :