@incollection{XUPS_1995____23_0, author = {Brion, Michel}, title = {Polytopes convexes entiers}, booktitle = {Aspects g\'eom\'etriques et combinatoires de la convexit\'e}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {23--49}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {1995}, doi = {10.5802/xups.1995-02}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/xups.1995-02/} }
Brion, Michel. Polytopes convexes entiers. Journées mathématiques X-UPS, Aspects géométriques et combinatoires de la convexité (1995), pp. 23-49. doi : 10.5802/xups.1995-02. http://www.numdam.org/articles/10.5802/xups.1995-02/
[1] The topology of torus actions on symplectic manifolds, Progress in Math., 93, Birkhäuser Verlag, Basel, 1991 | DOI
[2] Zerlegungen und Bewertungen von Gitterpolytopen, J. reine angew. Math., Volume 358 (1985), pp. 202-208 | MR | Zbl
[3] Polyèdres et réseaux, Enseign. Math., Volume 38 (1992), pp. 71-88 | MR | Zbl
[4] Points entiers dans les polytopes convexes, Séminaire Bourbaki, Vol. 1993/94 (Astérisque), Volume 227, Société Mathématique de France, Paris, 1995, pp. 145-169 (Exp. no. 780) | Numdam | MR | Zbl
[5] Piecewise polynomial functions, convex polytopes and enumerative geometry, Parameter spaces (Warsaw, 1994) (Banach Center Publ.), Volume 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 25-44 | MR | Zbl
[6] Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc., Volume 30 (1994), pp. 62-69 | DOI | MR | Zbl
[7] Décomposition des polyèdres : le point sur le troisième problème de Hilbert, Séminaire Bourbaki, Vol. 1984/85 (Astérisque), Volume 133-134, Société Mathématique de France, Paris, 1986, pp. 261-288 (Exp. no. 646) | Zbl
[8] Nombre de points entiers d’un tétraèdre, C. R. Acad. Sci. Paris Sér. I Math., Volume 258 (1964), pp. 3945-3948 | Zbl
[9] Démonstration de la loi de réciprocité pour le polyèdre convexe entier, C. R. Acad. Sci. Paris Sér. I Math., Volume 265 (1967), pp. 5-7 | Zbl
[10] Sur un problème de géométrie diophantienne linéaire I. Polyèdres et réseaux, J. reine angew. Math., Volume 226 (1967), pp. 1-29 | Zbl
[11] Polynômes arithmétiques et méthode des polyèdres en combinatoire, International Series of Numerical Mathematics, 35, Birkhäuser Verlag, Basel-Stuttgart, 1977
[12] Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 | DOI
[13] Integral points in convex polyhedra, combinatorial Riemann-Roch theorem and generalized Euler-MacLaurin formula, prépublication de l’I.H.E.S., 1992
[14] Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de , C. R. Acad. Sci. Paris Sér. I Math., Volume 317 (1993), pp. 501-507 | Zbl
[15] The polytope algebra, Adv. in Math., Volume 78 (1989), pp. 76-130 | DOI | MR | Zbl
[16] Valuations and dissections, Handbook of convex geometry, Volume B, North-Holland, 1993, pp. 933-988 | DOI | Zbl
[17] Valuations on convex bodies, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 170-247 | DOI | Zbl
[18] Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc., Volume 15 (1951), pp. 41-46 | MR | Zbl
[19] A theory of polyhedra, Adv. in Math., Volume 97 (1993), pp. 1-73 | DOI | MR | Zbl
[20] The Todd class of a toric variety, Adv. in Math., Volume 100 (1993), pp. 182-231 | MR | Zbl
[21] Translation scissors congruence, Adv. in Math., Volume 100 (1993), pp. 1-27 | DOI | MR | Zbl
[22] Geometrisches zur Zahlenlehre, Naturwiss. Z. Logos, Prag. (1899), pp. 311-319
[23] Toric varieties, lattice points and Dedekind sums, Math. Ann., Volume 295 (1993), pp. 1-24 | DOI | MR | Zbl
[24] A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes, St. Petersburg Math. J., Volume 4 (1993), pp. 789-812 | Zbl
[25] Finitely additive measures of virtual polytopes, St. Petersburg Math. J., Volume 4 (1993), pp. 337-356
[26] Dedekind sums, Carus Math. Monogr., 16, Mathematical Association of America, Washington, 1972 | DOI
[27] Variétés toriques et polytopes, Séminaire Bourbaki (Lect. Notes in Math.), Volume 901, Springer, 1980, pp. 71-84 | Zbl
[28] Lattice polyhedra, Canad. J. Math., Volume 16 (1964), pp. 389-396 | DOI | MR | Zbl
Cité par Sources :