The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.
@article{TSG_2009-2010__28__63_0, author = {Mj, Mahan}, title = {Cannon-Thurston {Maps,} i-bounded {Geometry} and a {Theorem} of {McMullen}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {63--107}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, year = {2009-2010}, doi = {10.5802/tsg.279}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.279/} }
TY - JOUR AU - Mj, Mahan TI - Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen JO - Séminaire de théorie spectrale et géométrie PY - 2009-2010 SP - 63 EP - 107 VL - 28 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.279/ DO - 10.5802/tsg.279 LA - en ID - TSG_2009-2010__28__63_0 ER -
%0 Journal Article %A Mj, Mahan %T Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen %J Séminaire de théorie spectrale et géométrie %D 2009-2010 %P 63-107 %V 28 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.279/ %R 10.5802/tsg.279 %G en %F TSG_2009-2010__28__63_0
Mj, Mahan. Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen. Séminaire de théorie spectrale et géométrie, Tome 28 (2009-2010), pp. 63-107. doi : 10.5802/tsg.279. http://www.numdam.org/articles/10.5802/tsg.279/
[1] Relatively hyperbolic groups (preprint, Southampton, 1997)
[2] The Cannon-Thurston map for punctured-surface groups, Math. Z., Volume 255 (2007) no. 1, pp. 35-76 | MR | Zbl
[3] Group invariant Peano curves, Geom. Topol., Volume 11 (2007), pp. 1315-1355 | MR | Zbl
[4] Géométrie et théorie des groupes, Lecture Notes in Mathematics, 1441, Springer-Verlag, Berlin, 1990 (Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary) | MR | Zbl
[5] Addendum to Ending Laminations and Cannon-Thurston Maps: Parabolics (arXiv:1002.2090, 2010)
[6] Semiconjugacies Between Relatively Hyperbolic Boundaries (arXiv:1007.2547, 2010)
[7] Relatively hyperbolic groups, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 810-840 | MR | Zbl
[8] La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165-187
[9] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | MR | Zbl
[10] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | MR
[11] Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961 | MR
[12] Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math., Volume 121 (1999) no. 5, pp. 1031-1078 | MR | Zbl
[13] Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math., Volume 146 (2001) no. 1, pp. 35-91 | MR | Zbl
[14] The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 1-107 | MR | Zbl
[15] On rigidity, limit sets, and end invariants of hyperbolic -manifolds, J. Amer. Math. Soc., Volume 7 (1994) no. 3, pp. 539-588 | MR | Zbl
[16] The classification of punctured-torus groups, Ann. of Math. (2), Volume 149 (1999) no. 2, pp. 559-626 | MR | Zbl
[17] Cannon-Thurston maps for hyperbolic group extensions, Topology, Volume 37 (1998) no. 3, pp. 527-538 | MR | Zbl
[18] Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom., Volume 48 (1998) no. 1, pp. 135-164 | MR | Zbl
[19] Cannon-Thurston Maps for Kleinian Groups (preprint, arXiv:math 1002.0996, 2010) | MR
[20] Cannon-Thurston Maps for Surface Groups (preprint, arXiv:math.GT/0607509, 2006) | MR
[21] Cannon-Thurston Maps for Surface Groups (preprint, arXiv:math.GT/0512539, 2005) | MR
[22] Ending Laminations and Cannon-Thurston Maps (submitted, arXiv:math.GT/0702162, 2007) | MR
[23] Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol., Volume 13 (2009) no. 1, pp. 189-245 | MR | Zbl
[24] Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 489-511 | MR | Zbl
[25] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 (Edited by Silvio Levy) | MR | Zbl
Cité par Sources :