On définit les surfaces de translation et le Laplacien associé à la métrique euclidienne (avec singularités). Ce laplacien n’est pas essentiellement auto-adjoint et on rappelle la façon dont les extensions auto-adjointes sont caractérisées. Il y a deux choix naturels dont on montre que les spectres coïncident.
We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum
Mots clés : translation surfaces, flat Laplace operator, isospectrality
@article{TSG_2009-2010__28__51_0, author = {Hillairet, Luc}, title = {Spectral theory of translation surfaces : {A} short introduction}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {51--62}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, year = {2009-2010}, doi = {10.5802/tsg.278}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.278/} }
TY - JOUR AU - Hillairet, Luc TI - Spectral theory of translation surfaces : A short introduction JO - Séminaire de théorie spectrale et géométrie PY - 2009-2010 SP - 51 EP - 62 VL - 28 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.278/ DO - 10.5802/tsg.278 LA - en ID - TSG_2009-2010__28__51_0 ER -
%0 Journal Article %A Hillairet, Luc %T Spectral theory of translation surfaces : A short introduction %J Séminaire de théorie spectrale et géométrie %D 2009-2010 %P 51-62 %V 28 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.278/ %R 10.5802/tsg.278 %G en %F TSG_2009-2010__28__51_0
Hillairet, Luc. Spectral theory of translation surfaces : A short introduction. Séminaire de théorie spectrale et géométrie, Tome 28 (2009-2010), pp. 51-62. doi : 10.5802/tsg.278. http://www.numdam.org/articles/10.5802/tsg.278/
[1] Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987 (Translated from the 1980 Russian original by S. Khrushchëv and V. Peller) | MR
[2] On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math., Volume 35 (1982) no. 3, pp. 275-331 | MR | Zbl
[3] Sobolev regularity of solutions of the cohomological equation (preprint, http://arxiv.org/abs/0707.0940v2, 2007)
[4] Distributions and operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009 | MR | Zbl
[5] Spectral decomposition of square-tiled surfaces, Math. Z., Volume 260 (2008) no. 2, pp. 393-408 | MR | Zbl
[6] -matrix and Krein formula on Euclidean surfaces with conical singularities (in preparation, 2010)
[7] Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond, J. Comput. Appl. Math., Volume 194 (2006) no. 1, pp. 141-155 | MR | Zbl
[8] Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians (preprint, http://arxiv.org/abs/0906.0717v1, 2009)
[9] Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom., Volume 82 (2009) no. 1, pp. 35-100 | MR | Zbl
[10] Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications (Contemp. Math.), Volume 415, Amer. Math. Soc., Providence, RI, 2006, pp. 201-225 | MR | Zbl
[11] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975 | MR | Zbl
[12] Methods of modern mathematical physics. I, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980 (Functional analysis) | MR | Zbl
[13] Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2), Volume 32 (1986) no. 1-2, pp. 79-94 | MR | Zbl
[14] Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl
Cité par Sources :