We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.
Mots clés : Lorentzian geometry, injectivity radius, constant mean curvature foliation, harmonic coordinates
@article{TSG_2007-2008__26__77_0, author = {LeFloch, Philippe G.}, title = {Injectivity radius and optimal regularity of {Lorentzian} manifolds with bounded curvature}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {77--90}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, year = {2007-2008}, doi = {10.5802/tsg.261}, zbl = {1191.53052}, mrnumber = {2654598}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.261/} }
TY - JOUR AU - LeFloch, Philippe G. TI - Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature JO - Séminaire de théorie spectrale et géométrie PY - 2007-2008 SP - 77 EP - 90 VL - 26 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.261/ DO - 10.5802/tsg.261 LA - en ID - TSG_2007-2008__26__77_0 ER -
%0 Journal Article %A LeFloch, Philippe G. %T Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature %J Séminaire de théorie spectrale et géométrie %D 2007-2008 %P 77-90 %V 26 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.261/ %R 10.5802/tsg.261 %G en %F TSG_2007-2008__26__77_0
LeFloch, Philippe G. Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature. Séminaire de théorie spectrale et géométrie, Tome 26 (2007-2008), pp. 77-90. doi : 10.5802/tsg.261. http://www.numdam.org/articles/10.5802/tsg.261/
[1] M.T. Anderson, Convergence and rigidity of metrics under Ricci curvature bounds, Invent. Math. 102 (1990), 429–445. | MR | Zbl
[2] M.T. Anderson, Regularity for Lorentz metrics under curvature bounds, Jour. Math. Phys. 44 (2003), 2994–3012. | MR | Zbl
[3] L. Andersson and V. Moncrief, Elliptic-hyperbolic systems and the Einstein equations, Ann. Inst. Henri Poincaré 4 (2003), 1–34. | MR | Zbl
[4] L. Andersson and V. Moncrief, Future complete vacuum spacetimes, in “The Einstein equations and the large scale behavior of gravitational fields”, Birkhäuser, Basel, 2004, pp. 299–330. | MR | Zbl
[5] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982), 131–152. | MR | Zbl
[6] A. Besse, Einstein manifolds, Ergebenisse Math. Series 3, Springer Verlag, 1987. | MR | Zbl
[7] J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15–53. | MR | Zbl
[8] B.-L. Chen and P.G. LeFloch, Injectivity radius estimates for Lorentzian manifolds, Commun. Math. Phys. 278 (2008), 679–713. | MR | Zbl
[9] B.-L. Chen and P.G. LeFloch, Local foliations and optimal regularity of Einstein spacetimes, submitted.
[10] D.M. DeTurck and J.L. Kazdan, Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 14 (1981), 249–260. | Numdam | MR | Zbl
[11] C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983), 523–533. | MR | Zbl
[12] S. Hawking and G.F. Ellis, The large scale structure of space-time, Cambridge Univ. Press, 1973. | MR | Zbl
[13] J. Jost and H. Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), 27–77. | MR | Zbl
[14] S. Klainerman and I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc. 21 (2008), 775–795. | MR
[15] S. Klainerman and I. Rodnianski, On the breakdown criterion in general relativity, preprint, 2008.
[16] R. Penrose, Techniques of differential topology in relativity, CBMS-NSF Region. Conf. Series Appli. Math., Vol. 7, 1972. | MR | Zbl
[17] P. Petersen, Convergence theorems in Riemannian geometry, in “Comparison Geometry” (Berkeley, CA, 1992–93), MSRI Publ. 30, Cambridge Univ. Press, 1997, pp. 167–202. | MR | Zbl
Cité par Sources :