Quelques notions d’espaces stratifiés
Séminaire de théorie spectrale et géométrie, Tome 26 (2007-2008), pp. 13-28.
DOI : 10.5802/tsg.259
Classification : 57N80, 32S60, 58A35
Mots clés : stratifications, espaces stratifiés, pseudo-variétés, cs-ensembles
Kloeckner, Benoît 1

1 Université Joseph Fourier - Grenoble 1 Institut Fourier - UMR CNRS 5582 100 rue des Maths BP 74 38402 St Martin d’Hères (France)
@article{TSG_2007-2008__26__13_0,
     author = {Kloeckner, Beno{\^\i}t},
     title = {Quelques notions d{\textquoteright}espaces stratifi\'es},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {13--28},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {26},
     year = {2007-2008},
     doi = {10.5802/tsg.259},
     zbl = {1193.57012},
     mrnumber = {2654596},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/tsg.259/}
}
TY  - JOUR
AU  - Kloeckner, Benoît
TI  - Quelques notions d’espaces stratifiés
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2007-2008
SP  - 13
EP  - 28
VL  - 26
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.259/
DO  - 10.5802/tsg.259
LA  - fr
ID  - TSG_2007-2008__26__13_0
ER  - 
%0 Journal Article
%A Kloeckner, Benoît
%T Quelques notions d’espaces stratifiés
%J Séminaire de théorie spectrale et géométrie
%D 2007-2008
%P 13-28
%V 26
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/tsg.259/
%R 10.5802/tsg.259
%G fr
%F TSG_2007-2008__26__13_0
Kloeckner, Benoît. Quelques notions d’espaces stratifiés. Séminaire de théorie spectrale et géométrie, Tome 26 (2007-2008), pp. 13-28. doi : 10.5802/tsg.259. http://www.numdam.org/articles/10.5802/tsg.259/

[1] Gibson, Christopher G.; Wirthmüller, Klaus; du Plessis, Andrew A.; Looijenga, Eduard J. N. Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin, 1976 | MR | Zbl

[2] Goresky, Mark; MacPherson, Robert Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | MR | Zbl

[3] Goresky, Mark; MacPherson, Robert Intersection homology. II, Invent. Math., Volume 72 (1983) no. 1, pp. 77-129 | MR | Zbl

[4] Goresky, Mark; MacPherson, Robert Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 14, Springer-Verlag, Berlin, 1988 | MR | Zbl

[5] Goresky, R. Mark Triangulation of stratified objects, Proc. Amer. Math. Soc., Volume 72 (1978) no. 1, pp. 193-200 | MR | Zbl

[6] Hardt, Robert M. Stratification of real analytic mappings and images, Invent. Math., Volume 28 (1975), pp. 193-208 | MR | Zbl

[7] Hironaka, Heisuke Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493 | MR | Zbl

[8] Hughes, Bruce The approximate tubular neighborhood theorem, Ann. of Math. (2), Volume 156 (2002) no. 3, pp. 867-889 | MR | Zbl

[9] Hughes, Bruce; Weinberger, Shmuel Surgery and stratified spaces, Surveys on surgery theory, Vol. 2 (Ann. of Math. Stud.), Volume 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 319-352 | MR | Zbl

[10] Johnson, F. E. A. On the triangulation of stratified sets and singular varieties, Trans. Amer. Math. Soc., Volume 275 (1983) no. 1, pp. 333-343 | MR | Zbl

[11] Łojasiewicz, S. Ensembles semi-analytiques, 1965 (miméographié, IHES, Bures-sur-Yvette)

[12] Mather, John N. « Stability of C mappings I-VI. », Ann. of Math. (2) 87 (1968), p. 89–104, Ann. of Math. (2) 89 (1969), p. 254–291, Inst. Hautes Études Sci. Publ. Math. (1968), no. 35, p. 279–308, Inst. Hautes Études Sci. Publ. Math. (1969), no. 37, p. 223–248, Advances in Math. 4 (1970), p. 301–336 (1970), Proceedings of Liverpool Singularities-Symposium, I (1969/70) (Berlin), Springer, 1971, p. 207–253. Lecture Notes in Math., Vol. 192.

[13] Mather, John N. Notes on Topological Stability, 1970 (miméographié, Harvard University)

[14] Mather, John N. Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 195-232 | MR | Zbl

[15] Pflaum, Markus J. Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics, 1768, Springer-Verlag, Berlin, 2001 | MR | Zbl

[16] Quinn, Frank Homotopically stratified sets, J. Amer. Math. Soc., Volume 1 (1988) no. 2, pp. 441-499 | MR | Zbl

[17] Siebenmann, L. C. Topological manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 133-163 | MR | Zbl

[18] Siebenmann, L. C. Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv., Volume 47 (1972), p. 123-136 ; ibid. 47 (1972), 137–163 | MR | Zbl

[19] Teufel, Michael Abstract prestratified sets are (b)-regular, J. Differential Geom., Volume 16 (1981) no. 3, p. 529-536 (1982) | MR | Zbl

[20] Thom, R. Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq, Oxford Univ. Press, London, 1964, pp. 191-202 | MR | Zbl

[21] Thom, R. Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 240-284 | MR | Zbl

[22] Thom, René La stabilité topologique des applications polynomiales, Enseignement Math. (2), Volume 8 (1962), pp. 24-33 | MR | Zbl

[23] Whitney, Hassler Complexes of manifolds, Proc. Nat. Acad. Sci. U. S. A., Volume 33 (1947), pp. 10-11 | MR | Zbl

[24] Whitney, Hassler Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 205-244 | MR | Zbl

[25] Whitney, Hassler Tangents to an analytic variety, Ann. of Math. (2), Volume 81 (1965), pp. 496-549 | MR | Zbl

Cité par Sources :