Surfaces in 𝕊 3 and 3 via spinors
Séminaire de théorie spectrale et géométrie, Tome 23 (2004-2005), pp. 131-144.

We generalize the spinorial characterization of isometric immersions of surfaces in 3 given by T. Friedrich to surfaces in 𝕊 3 and 3 . The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean 4-space.

DOI : 10.5802/tsg.235
Classification : 53C27, 53C45, 53A10
Mots clés : spin geometry, surface, energy-momentum tensor
@article{TSG_2004-2005__23__131_0,
     author = {Morel, Bertrand},
     title = {Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {131--144},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     year = {2004-2005},
     doi = {10.5802/tsg.235},
     zbl = {1106.53004},
     mrnumber = {2270227},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.235/}
}
TY  - JOUR
AU  - Morel, Bertrand
TI  - Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2004-2005
SP  - 131
EP  - 144
VL  - 23
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.235/
DO  - 10.5802/tsg.235
LA  - en
ID  - TSG_2004-2005__23__131_0
ER  - 
%0 Journal Article
%A Morel, Bertrand
%T Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors
%J Séminaire de théorie spectrale et géométrie
%D 2004-2005
%P 131-144
%V 23
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/tsg.235/
%R 10.5802/tsg.235
%G en
%F TSG_2004-2005__23__131_0
Morel, Bertrand. Surfaces in $\mathbb{S}^3$ and $\mathbb{H}^3$ via spinors. Séminaire de théorie spectrale et géométrie, Tome 23 (2004-2005), pp. 131-144. doi : 10.5802/tsg.235. http://www.numdam.org/articles/10.5802/tsg.235/

[1] C. Bär, Real Killing Spinors and Holonomy, Commun. Math. Phys. 154 (1993), 509-521. | MR | Zbl

[2] —,Metrics with Harmonic Spinors, Geom. Func. Anal. 6 (1996), 899–942. | MR | Zbl

[3] C. Bär, P. Gauduchon and A. Moroianu, Generalized Cylinders in Semi-Riemannian and Spin Geometry, math.DG/0303095. | Zbl

[4] H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, Teubner Verlag, Stuttgart/Leipzig, 1991. | MR | Zbl

[5] J.P. Bourguignon, O. Hijazi, J.-L. Milhorat, and A. Moroianu, A Spinorial approach to Riemannian and Conformal Geometry, Monograph, In preparation, 2004.

[6] Th. Friedrich, On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys. 28 (1998), no. 1-2, 143–157. | MR | Zbl

[7] Th. Friedrich and E.-C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1–2, 128–172. | MR | Zbl

[8] O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys. 16 (1995), 27–38. | MR | Zbl

[9] R. Kusner and N. Schmitt, The Spinor Representation of Surfaces in Space, math.DG-GA/9610005.

[10] —, The Spinor Representation of Minimal Surfaces, math.DG-GA/9512003

[11] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, 1989. | MR | Zbl

[12] B. Morel, Eigenvalue Estimates for the Dirac-Schrödinger Operators, J. Geom. Phys. 38 (2001), 1–18. | MR | Zbl

[13] —, The Energy-Momentum tensor as a second fundamental form, math.DG/0302205.

[14] I.A. Taimanov, The Weierstrass representation of closed surfaces in 3 , Funct. Anal. Appl. 32 (1998), no. 4, 49–62. | MR | Zbl

[15] A. Trautman, Spinors and the Dirac operator on hypersurfaces I. General Theory, Journ. Math. Phys. 33 (1992), 4011–4019. | MR | Zbl

Cité par Sources :