We investigate the computational performance of hybrid high-order methods applied to flow simulations in extremely large discrete fracture networks (over one million of fractures). We study the choice of basis functions, the trade-off between increasing the polynomial order and refining the mesh, and how to take advantage of polygonal cells to reduce the number of degrees of freedom.
Mots clés : discrete fracture networks, flow simulations, hybrid high-order methods
@article{SMAI-JCM_2022__8__375_0, author = {Ern, Alexandre and H\'edin, Florent and Pichot, G\'eraldine and Pignet, Nicolas}, title = {Hybrid high-order methods for flow simulations in extremely large discrete fracture networks}, journal = {The SMAI Journal of computational mathematics}, pages = {375--398}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.92}, language = {en}, url = {http://www.numdam.org/articles/10.5802/smai-jcm.92/} }
TY - JOUR AU - Ern, Alexandre AU - Hédin, Florent AU - Pichot, Géraldine AU - Pignet, Nicolas TI - Hybrid high-order methods for flow simulations in extremely large discrete fracture networks JO - The SMAI Journal of computational mathematics PY - 2022 SP - 375 EP - 398 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - http://www.numdam.org/articles/10.5802/smai-jcm.92/ DO - 10.5802/smai-jcm.92 LA - en ID - SMAI-JCM_2022__8__375_0 ER -
%0 Journal Article %A Ern, Alexandre %A Hédin, Florent %A Pichot, Géraldine %A Pignet, Nicolas %T Hybrid high-order methods for flow simulations in extremely large discrete fracture networks %J The SMAI Journal of computational mathematics %D 2022 %P 375-398 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U http://www.numdam.org/articles/10.5802/smai-jcm.92/ %R 10.5802/smai-jcm.92 %G en %F SMAI-JCM_2022__8__375_0
Ern, Alexandre; Hédin, Florent; Pichot, Géraldine; Pignet, Nicolas. Hybrid high-order methods for flow simulations in extremely large discrete fracture networks. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 375-398. doi : 10.5802/smai-jcm.92. http://www.numdam.org/articles/10.5802/smai-jcm.92/
[1] On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., Volume 231 (2012) no. 1, pp. 45-65 | DOI | MR | Zbl
[2] Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 727-747 | DOI | Numdam | MR | Zbl
[3] The virtual element method for discrete fracture network simulations, Comput. Methods Appl. Mech. Eng., Volume 280 (2014), pp. 135-156 | DOI | MR | Zbl
[4] A Globally Conforming Method for Solving Flow in Discrete Fracture Networks Using the Virtual Element Method, Finite Elem. Anal. Des., Volume 109 (2016) no. C, pp. 23-36 | DOI
[5] Parallel meshing, discretization, and computation of flow in massive discrete fracture networks, SIAM J. Sci. Comput., Volume 41 (2019) no. 4, p. c317-c338 | DOI | MR | Zbl
[6] Refinement strategies for polygonal meshes applied to adaptive VEM discretization, Finite Elem. Anal. Des., Volume 186 (2021), 103502 | DOI | MR
[7] An optimization approach for large scale simulations of discrete fracture network flows, J. Comput. Phys., Volume 256 (2014), pp. 838-853 | DOI | MR | Zbl
[8] Scaling of fracture systems in geological media, Reviews of Geophysics, Volume 39 (2001) no. 3, pp. 347-383 | DOI
[9] Quality mesh generation, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc., Volume 328 (2000) no. 6, pp. 505-518 | DOI | Zbl
[10] Parametric surface meshing using a combined advancing-front generalized Delaunay approach, Int. J. Numer. Methods Eng., Volume 49 (2000) no. 1-2, pp. 233-259 | DOI | MR | Zbl
[11] An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal., Volume 56 (2018) no. 3, pp. 1525-1546 | DOI | MR | Zbl
[12] Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resources Research, Volume 26 (1990) no. 3, pp. 479-489 | DOI
[13] A hybrid high-order method for passive transport in fractured porous media, GEM. Int. J. Geomath., Volume 10 (2019) no. 1, 12, 34 pages | DOI | MR | Zbl
[14] Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming, J. Comput. Appl. Math., Volume 344 (2018), pp. 852-874 | DOI | MR | Zbl
[15] Hybrid high-order methods. A primer with application to solid mechanics, SpringerBriefs in Mathematics, Springer, 2021 | DOI
[16] Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 635-650 | DOI | Numdam | MR | Zbl
[17] A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling, J. Geophys. Res. Solid Earth, Volume 118 (2013) no. 4, pp. 1393-1407 | DOI
[18] A likely universal model of fracture scaling and its consequence for crustal hydromechanics, J. Geophys. Res. Solid Earth, Volume 115 (2010) no. B10 | DOI
[19] Synthetic Benchmark for Modeling Flow in 3D Fractured Media, Comput. Geosci., Volume 50 (2013), pp. 59-71 | DOI
[20] The hybrid high-order method for polytopal meshes. Design, analysis, and applications, 19, Springer, 2020, xxxi+525 pages | DOI
[21] A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., Volume 283 (2015), pp. 1-21 | DOI | MR | Zbl
[22] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., Volume 14 (2014) no. 4, pp. 461-472 | DOI | MR | Zbl
[23] Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models, Phys. Rev. E, Volume 102 (2020) no. 5, 053312 | DOI | MR
[24] Flow simulation in three-dimensional discrete fracture networks, SIAM J. Sci. Comput., Volume 31 (2009) no. 4, pp. 2688-2705 | DOI | MR | Zbl
[25] A reduced model for Darcy’s problem in networks of fractures, ESAIM, Math. Model. Numer. Anal., Volume 48 (2014) no. 4, pp. 1089-1116 | DOI | MR | Zbl
[26] FraC: A new conforming mesh method for discrete fracture networks, J. Comput. Phys., Volume 376 (2019), pp. 713-732 | DOI | MR | Zbl
[27] Dual virtual element method for discrete fractures networks, SIAM J. Sci. Comput., Volume 40 (2018) no. 1, p. b228-b258 | DOI | MR | Zbl
[28] Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations, J. Comput. Phys., Volume 376 (2019), pp. 694-712 | DOI | MR | Zbl
[29] et al. Eigen v3, http://eigen.tuxfamily.org, 2010
[30] HHO-DFN: a Hybrid High Order (HHO) method for the simulation of flow in large tridimensional Discrete Fracture Networks, Numerical Mathematics and Advanced Applications ENUMATH 2019, Springer (2019)
[31] Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy, SIAM J. Sci. Comput., Volume 36 (2014) no. 4, p. a1871-a1894 | DOI | MR | Zbl
[32] dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., Volume 84 (2015), pp. 10-19 | DOI
[33] MKL, https://software.intel.com/en-us/mkl, 2019
[34] Modeling flow and transport in fracture networks using graphs, Phys. Rev. E, Volume 97 (2018) no. 3, 033304 | DOI
[35] Mesh Generation and Flow Simulation in Large Tridimensional Fracture Networks, MASCOT2018 - 15th Meeting on Applied Scientific Computing and Tools (IMACS Series in Computational and Applied Mathematics), Volume 22 (2019)
[36] Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models, Water Resources Research, Volume 52 (2016) no. 11, pp. 8526-8545 | DOI
[37] Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., Volume 26 (2005) no. 5, pp. 1667-1691 | DOI | MR | Zbl
[38] Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model, Comput. Geosci., Volume 8 (2004) no. 3, pp. 217-234 | DOI | MR | Zbl
[39] A multilevel algebraic error estimator and the corresponding iterative solver with -robust behavior, SIAM J. Numer. Anal., Volume 58 (2020) no. 5, pp. 2856-2884 | DOI | MR | Zbl
[40] Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software, Journal of Hydrology, Volume 554 (2017), pp. 66-79 | DOI
[41] A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks, SIAM J. Sci. Comput., Volume 34 (2012) no. 1, p. b86-b105 | DOI | MR | Zbl
[42] A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal., Volume 45 (2007) no. 4, pp. 1570-1599 | DOI | MR | Zbl
Cité par Sources :