A combined first and second order model for a junction with ramp buffer
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 349-374.

Second order macroscopic traffic flow models are able to reproduce the so-called capacity drop effect, i.e., the phenomenon that the outflow of a congested region is substantially lower than the maximum achievable flow. Within this work, we propose a first order model for a junction with ramp buffer that is solely modified at the intersection so that the capacity drop is captured. Theoretical investigations motivate the new choice of coupling conditions and illustrate the difference to purely first and second order models. The numerical example considering the optimal control of the onramp merging into a main road highlights that the combined model generates similar results as the second order model.

Publié le :
DOI : 10.5802/smai-jcm.90
Classification : 65M08, 90C30
Mots clés : traffic flow, numerical analysis, ramp metering control
Weissen, Jennifer 1 ; Kolb, Oliver 1 ; Göttlich, Simone 1

1 University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany
@article{SMAI-JCM_2022__8__349_0,
     author = {Weissen, Jennifer and Kolb, Oliver and G\"ottlich, Simone},
     title = {A combined first and second order model for a junction with ramp buffer},
     journal = {The SMAI Journal of computational mathematics},
     pages = {349--374},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.90},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.90/}
}
TY  - JOUR
AU  - Weissen, Jennifer
AU  - Kolb, Oliver
AU  - Göttlich, Simone
TI  - A combined first and second order model for a junction with ramp buffer
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 349
EP  - 374
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.90/
DO  - 10.5802/smai-jcm.90
LA  - en
ID  - SMAI-JCM_2022__8__349_0
ER  - 
%0 Journal Article
%A Weissen, Jennifer
%A Kolb, Oliver
%A Göttlich, Simone
%T A combined first and second order model for a junction with ramp buffer
%J The SMAI Journal of computational mathematics
%D 2022
%P 349-374
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.90/
%R 10.5802/smai-jcm.90
%G en
%F SMAI-JCM_2022__8__349_0
Weissen, Jennifer; Kolb, Oliver; Göttlich, Simone. A combined first and second order model for a junction with ramp buffer. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 349-374. doi : 10.5802/smai-jcm.90. http://www.numdam.org/articles/10.5802/smai-jcm.90/

[1] Andreianov, Boris; Donadello, Carlotta; Razafison, Ulrich; Rosini, Massimiliano D. Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., Volume 12 (2015), pp. 259-278 | arXiv | DOI | MR | Zbl

[2] Andreianov, Boris; Donadello, Carlotta; Rosini, Massimiliano D. A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., Volume 26 (2016), pp. 751-802 | DOI | MR | Zbl

[3] Aw, A.; Klar, A.; Materne, T.; Rascle, M. Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., Volume 63 (2002), pp. 259-278 | DOI | MR | Zbl

[4] Aw, A.; Rascle, M. Resurrection of “Second Order” Models of Traffic Flow, SIAM J. Appl. Math., Volume 60 (2000), pp. 916-938 | DOI | MR | Zbl

[5] Banks, James H. Freeway bottlenecks: a basis for ramp metering?, Transportation Research Record, Volume 1320 (1991), pp. 83-90

[6] Bressan, Alberto Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, 20, Oxford University Press, 2005

[7] Bressan, Alberto; Čanić, Sunčica; Garavello, Mauro; Herty, Michael; Piccoli, Benedetto Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., Volume 1 (2014), pp. 47-111 | DOI | MR | Zbl

[8] Cassidy, Michael J.; Bertini, Robert L. Some traffic features at freeway bottlenecks, Transportation Research Part B: Methodological, Volume 33 (1999), pp. 25-42 | DOI

[9] Chung, Koohong; Rudjanakanoknad, Jittichai; Cassidy, Michael J. Relation between traffic density and capacity drop at three freeway bottlenecks, Transportation Research Part B: Methodological, Volume 41 (2007), pp. 82-95 | DOI

[10] Coclite, Giuseppe M.; Garavello, Mauro; Piccoli, Benedetto Traffic flow on a road network, SIAM J. Math. Anal., Volume 36 (2005), pp. 1862-1886 | DOI | MR

[11] Daganzo, Carlos F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, Volume 28 (1994), pp. 269-287 | DOI

[12] Daganzo, Carlos F. Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, Volume 29 (1995), pp. 277-286 | DOI

[13] Dal Santo, Edda; Donadello, Carlotta; Pellegrino, Sabrina F.; Rosini, Massimiliano D. Representation of capacity drop at a road merge via point constraints in a first order traffic model, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1-34 | DOI | MR | Zbl

[14] Delle Monache, Maria Laura; Reilly, Jack; Samaranayake, Samitha; Krichene, Walid; Goatin, Paola; Bayen, Alexandre M. A PDE-ODE model for a junction with ramp buffer, SIAM J. Appl. Math., Volume 74 (2014), pp. 22-39 | DOI | MR

[15] Fan, Shimao; Sun, Ye; Piccoli, Benedetto; Seibold, Benjamin; Work, Daniel B. A collapsed generalized Aw–Rascle–Zhang model and its model accuracy (2017) (http://arxiv.org/abs/1702.03624)

[16] Garavello, Mauro; Piccoli, Benedetto Traffic flow on a road network using the Aw–Rascle model, Commun. Partial Differ. Equations, Volume 31 (2006), pp. 243-275 | DOI | MR | Zbl

[17] Garavello, Mauro; Piccoli, Benedetto Traffic Flow On Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences, 2006

[18] Goatin, Paola The Aw–Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, Volume 44 (2006), pp. 287-303 | DOI | MR | Zbl

[19] Goatin, Paola; Göttlich, Simone; Kolb, Oliver Speed limit and ramp meter control for traffic flow networks, Engineering Optimization, Volume 48 (2016), pp. 1121-1144 | DOI | MR

[20] Goatin, Paola; Göttlich, Simone; Kolb, Oliver Capacity drop and traffic control for a second order traffic model, Netw. Heterog. Media, Volume 12 (2017), pp. 663-681 | DOI | MR | Zbl

[21] Greenberg, James M. Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., Volume 62 (2002), pp. 729-745 | DOI | MR

[22] Hall, Fred L.; Agyemang-Duah, Kwaku Freeway capacity drop and the definition of capacity, Transportation Research Record, Volume 1320 (2000), pp. 91-98

[23] Haut, Bertrand; Bastin, Georges A second order model of road junctions in fluid models of traffic networks, Netw. Heterog. Media, Volume 2 (2007), pp. 227-253 | DOI | MR | Zbl

[24] Haut, Bertrand; Bastin, Georges; Chitour, Yacine A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions, IFAC Proceedings Volumes, Volume 38 (2005), pp. 114-119 | DOI

[25] Helbing, Dirk Traffic and related self-driven many-particle systems, Rev. Mod. Phys., Volume 73 (2001), pp. 1067-1141 | DOI | MR

[26] Herty, M.; Moutari, S. A macro-kinetic hybrid model for traffic flow on road networks, Comput. Methods Appl. Math., Volume 9 (2009), pp. 238-252 | DOI | MR | Zbl

[27] Herty, M.; Moutari, S.; Rascle, M. Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, Volume 1 (2006), pp. 275-294 | DOI | MR | Zbl

[28] Herty, M.; Rascle, M. Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., Volume 38 (2006), pp. 595-616 | DOI | MR | Zbl

[29] Herty, Michael; Klar, Axel Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., Volume 25 (2003), pp. 1066-1087 | DOI | MR

[30] Holden, Helge; Risebro, Nils Henrik A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., Volume 26 (1995), pp. 999-1017 | DOI | MR | Zbl

[31] Kolb, Oliver; Costeseque, Guillaume; Goatin, Paola; Göttlich, Simone Pareto-optimal coupling conditions for the Aw–Rascle–Zhang traffic flow model at junctions, SIAM J. Appl. Math., Volume 78 (2018), pp. 1981-2002 | DOI | MR | Zbl

[32] Kružkov, Stanislav N. First order quasilinear equations in several independent variables, Math. USSR, Sb., Volume 10 (1970)

[33] Lax, Peter D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, 1973

[34] Lebacque, J. P. Intersection Modeling, Application to Macroscopic Network Traffic Flow Models and Traffic Management, Traffic and Granular Flow ’03, Springer, 2005, pp. 261-278 | DOI | Zbl

[35] Lebacque, Jean Patrick Two-phase bounded-acceleration traffic flow model: analytical solutions and applications, Transportation Research Record, Volume 1852 (2003), pp. 220-230 | DOI

[36] Lighthill, Michael James; Whitham, Gerald B. On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955), pp. 317-345 | DOI | MR | Zbl

[37] Papageorgiou, Markos; Kotsialos, Apostolos Freeway ramp metering: An overview, IEEE Transactions on Intelligent Transportation Systems, Volume 3 (2002), pp. 271-281 | DOI

[38] Parzani, Celine; Buisson, Christine Second-order model and capacity drop at merge, Transportation Research Record, Volume 2315 (2012), pp. 25-34 | DOI

[39] Rascle, M. An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model, Math. Comput. Modelling, Volume 35 (2002), pp. 581-590 | DOI | MR | Zbl

[40] Reilly, Jack; Samaranayake, Samitha; Delle Monache, Maria Laura; Krichene, Walid; Goatin, Paola; Bayen, Alexandre M. Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, J. Optim. Theory Appl., Volume 167 (2015), pp. 733-760 | DOI | MR | Zbl

[41] Richards, Paul I. Shock waves on the highway, Oper. Res., Volume 4 (1956), pp. 42-51 | DOI | MR | Zbl

[42] Siebel, Florian; Mauser, Wolfram On the fundamental diagram of traffic flow, SIAM J. Appl. Math., Volume 66 (2006), pp. 1150-1162 | DOI | MR | Zbl

[43] Siebel, Florian; Mauser, Wolfram; Moutari, Salissou; Rascle, Michel Balanced vehicular traffic at a bottleneck, Math. Comput. Modelling, Volume 49 (2009), pp. 689-702 | DOI | MR | Zbl

[44] Treiber, Martin; Kesting, Arne Traffic Flow Dynamics: Data, Models and Simulation, Springer, 2013 | DOI

[45] Zhang, H. M. A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, Volume 36 (2002), pp. 275-290 | DOI

Cité par Sources :