Charge-conserving hybrid methods for the Yang–Mills equations
The SMAI Journal of computational mathematics, Tome 7 (2021), pp. 97-119.

The Yang–Mills equations generalize Maxwell’s equations to nonabelian gauge groups, and a quantity analogous to charge is locally conserved by the nonlinear time evolution. Christiansen and Winther [8] observed that, in the nonabelian case, the Galerkin method with Lie algebra-valued finite element differential forms appears to conserve charge globally but not locally, not even in a weak sense. We introduce a new hybridization of this method, give an alternative expression for the numerical charge in terms of the hybrid variables, and show that a local, per-element charge conservation law automatically holds.

Publié le :
DOI : 10.5802/smai-jcm.73
Classification : 65M60
Mots clés : finite element method, domain decomposition, conservation laws, charge conservation, Yang–Mills equations, Maxwell’s equations
Berchenko-Kogan, Yakov 1 ; Stern, Ari 2

1 University of Hawaii
2 Washington University in St. Louis
@article{SMAI-JCM_2021__7__97_0,
     author = {Berchenko-Kogan, Yakov and Stern, Ari},
     title = {Charge-conserving hybrid methods for the {Yang{\textendash}Mills} equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {97--119},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {7},
     year = {2021},
     doi = {10.5802/smai-jcm.73},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.73/}
}
TY  - JOUR
AU  - Berchenko-Kogan, Yakov
AU  - Stern, Ari
TI  - Charge-conserving hybrid methods for the Yang–Mills equations
JO  - The SMAI Journal of computational mathematics
PY  - 2021
SP  - 97
EP  - 119
VL  - 7
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.73/
DO  - 10.5802/smai-jcm.73
LA  - en
ID  - SMAI-JCM_2021__7__97_0
ER  - 
%0 Journal Article
%A Berchenko-Kogan, Yakov
%A Stern, Ari
%T Charge-conserving hybrid methods for the Yang–Mills equations
%J The SMAI Journal of computational mathematics
%D 2021
%P 97-119
%V 7
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.73/
%R 10.5802/smai-jcm.73
%G en
%F SMAI-JCM_2021__7__97_0
Berchenko-Kogan, Yakov; Stern, Ari. Charge-conserving hybrid methods for the Yang–Mills equations. The SMAI Journal of computational mathematics, Tome 7 (2021), pp. 97-119. doi : 10.5802/smai-jcm.73. http://www.numdam.org/articles/10.5802/smai-jcm.73/

[1] Alnæs, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N. The FEniCS Project Version 1.5, Archive of Numerical Software, Volume 3 (2015) no. 100 | DOI

[2] Arnold, D. N.; Falk, R. S.; Winther, R. Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl

[3] Arnold, D. N.; Falk, R. S.; Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | arXiv | DOI | MR | Zbl

[4] Berchenko-Kogan, Y.; Stern, A. Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math. (2020) | DOI

[5] Brezzi, F.; Douglas, J. Jr.; Marini, L. D. Two families of mixed finite elements for second order elliptic problems, Numer. Math., Volume 47 (1985) no. 2, pp. 217-235 | DOI | MR | Zbl

[6] Brezzi, F.; Fortin, M. Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer, 1991, x+350 pages | MR | Zbl

[7] Christiansen, S. H.; Halvorsen, T. G. A simplicial gauge theory, J. Math. Phys., Volume 53 (2012) no. 3, 033501, 17 pages | DOI | MR | Zbl

[8] Christiansen, S. H.; Winther, R. On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput., Volume 28 (2006) no. 1, pp. 75-101 | DOI | MR | Zbl

[9] Donaldson, S. K.; Kronheimer, P. B. The geometry of four-manifolds, Oxford Mathematical Monographs, Clarendon Press, 1990, x+440 pages (Oxford Science Publications) | MR | Zbl

[10] Hairer, E.; Lubich, C.; Wanner, G. Geometric numerical integration, Springer Series in Computational Mathematics, 31, Springer, 2006, xviii+644 pages (Structure-preserving algorithms for ordinary differential equations) | DOI | MR

[11] Hiptmair, R. Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl

[12] Logg, A.; Mardal, H.-A.; Wells, G. W. et al. Automated Solution of Differential Equations by the Finite Element Method, Springer, 2012 | DOI

[13] Mitrea, D.; Mitrea, M.; Shaw, M.-C. Traces of differential forms on Lipschitz domains, the boundary de Rham complex, and Hodge decompositions, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2061-2095 | DOI | MR | Zbl

[14] Monk, P. Analysis of a finite element method for Maxwell’s equations, SIAM J. Numer. Anal., Volume 29 (1992) no. 3, pp. 714-729 | DOI | MR | Zbl

[15] Uhlenbeck, K. K. Connections with L p bounds on curvature, Commun. Math. Phys., Volume 83 (1982) no. 1, pp. 31-42 | DOI | MR | Zbl

[16] Weck, N. Traces of differential forms on Lipschitz boundaries, Analysis (Munich), Volume 24 (2004) no. 2, pp. 147-169 | DOI | MR | Zbl

[17] Wilson, K. G. Confinement of quarks, Phys. Rev. D, Volume 10 (1974), pp. 2445-2459 | DOI

[18] Yang, C.-N.; Mills, R. L. Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev., Volume 96 (1954), pp. 191-195 | DOI | MR | Zbl

Cité par Sources :