A mixed variational formulation of the Brinkman problem is presented which is uniformly well–posed for degenerate (vanishing) coefficients under the hypothesis that a generalized Poincaré inequality holds. The construction of finite element schemes which inherit this property is then considered.
DOI : 10.5802/smai-jcm.7
Mots clés : Brinkman, Stokes, Darcy, mixed methods
@article{SMAI-JCM_2016__2__1_0, author = {Howell, Jason S. and Neilan, Michael and Walkington, Noel J.}, title = {A {Dual{\textendash}Mixed} {Finite} {Element} {Method} for the {Brinkman} {Problem}}, journal = {The SMAI Journal of computational mathematics}, pages = {1--17}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {2}, year = {2016}, doi = {10.5802/smai-jcm.7}, mrnumber = {3633543}, zbl = {1416.76112}, language = {en}, url = {http://www.numdam.org/articles/10.5802/smai-jcm.7/} }
TY - JOUR AU - Howell, Jason S. AU - Neilan, Michael AU - Walkington, Noel J. TI - A Dual–Mixed Finite Element Method for the Brinkman Problem JO - The SMAI Journal of computational mathematics PY - 2016 SP - 1 EP - 17 VL - 2 PB - Société de Mathématiques Appliquées et Industrielles UR - http://www.numdam.org/articles/10.5802/smai-jcm.7/ DO - 10.5802/smai-jcm.7 LA - en ID - SMAI-JCM_2016__2__1_0 ER -
%0 Journal Article %A Howell, Jason S. %A Neilan, Michael %A Walkington, Noel J. %T A Dual–Mixed Finite Element Method for the Brinkman Problem %J The SMAI Journal of computational mathematics %D 2016 %P 1-17 %V 2 %I Société de Mathématiques Appliquées et Industrielles %U http://www.numdam.org/articles/10.5802/smai-jcm.7/ %R 10.5802/smai-jcm.7 %G en %F SMAI-JCM_2016__2__1_0
Howell, Jason S.; Neilan, Michael; Walkington, Noel J. A Dual–Mixed Finite Element Method for the Brinkman Problem. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 1-17. doi : 10.5802/smai-jcm.7. http://www.numdam.org/articles/10.5802/smai-jcm.7/
[1] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., Volume 113 (1990) no. 3, pp. 209-259 | DOI | MR
[2] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes, Arch. Rational Mech. Anal., Volume 113 (1990) no. 3, pp. 261-298 | DOI | MR
[3] Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis, Journal of Artificial Organs, Volume 17 (2014) no. 4, pp. 329-336 | DOI
[4] Homogenization of a Darcy-Stokes system modeling vuggy porous media, Comput. Geosci., Volume 10 (2006) no. 3, pp. 291-302 | DOI | MR | Zbl
[5] A family of higher order mixed finite element methods for plane elasticity, Numer. Math., Volume 45 (1984) no. 1, pp. 1-22 | DOI | MR
[6] Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics, 1939, Springer-Verlag, Berlin, 2008, x+235 pages (Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by Boffi and Lucia Gastaldi) | DOI | MR
[7] Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér., Volume 21 (1987) no. 4, pp. 581-604 | DOI | Numdam | MR
[8] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991, x+350 pages | MR | Zbl
[9] Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, Journal of Mathematical Analysis and Applications, Volume 368 (2010) no. 2, pp. 658 -676 http://www.sciencedirect.com/science/article/pii/S0022247X10001472 | DOI | MR | Zbl
[10] Hydrodynamic modelling for groundwater flow through permeable reactive barriers, Hydrological Processes, Volume 16 (2002) no. 17, pp. 3393-3418 | DOI
[11] Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow, Numer. Math., Volume 126 (2014) no. 4, pp. 635-677 | DOI | MR | Zbl
[12] Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem, Numer. Methods Partial Differential Equations, Volume 27 (2011) no. 3, pp. 721-748 | DOI | MR | Zbl
[13] Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984, xv+493 pages | DOI
[14] Homogenization and numerical simulation of flow in geometries with textile microstructures, Multiscale Model. Simul., Volume 8 (2010) no. 4, pp. 1439-1460 | DOI | MR | Zbl
[15] A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., Volume 32 (2012) no. 4, pp. 1484-1508 | DOI | MR | Zbl
[16] Computations with finite element methods for the Brinkman problem, Comput. Geosci., Volume 15 (2011) no. 1, pp. 155-166 | DOI | Zbl
[17] Inf-sup conditions for twofold saddle point problems, Numer. Math., Volume 118 (2011) no. 4, pp. 663-693 | DOI | MR | Zbl
[18] Dual-mixed finite element methods for the Navier-Stokes equations, ESAIM: M2AN, Volume 47 (2013) no. 3, pp. 789-805 | DOI | Numdam | MR
[19] Analysis of finite element methods for the Brinkman problem, Calcolo, Volume 47 (2010) no. 3, pp. 129-147 | DOI | MR | Zbl
[20] A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys., Volume 229 (2010) no. 17, pp. 5933-5943 | DOI | MR | Zbl
[21] Three-dimensional numerical analysis of heat and mass transfer in heat pipes, Heat and Mass Transfer, Volume 43 (2007) no. 8, pp. 775-785 | DOI
[22] -conforming finite elements for the Brinkman problem, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 11, pp. 2227-2248 | DOI | MR | Zbl
[23] Numerical computations with -finite elements for the Brinkman problem, Comput. Geosci., Volume 16 (2012) no. 1, pp. 139-158 | DOI | MR
[24] Erratum: “Loi de Darcy ou loi de Brinkman?”, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, Volume 292 (1981) no. 17, 1239 pages | MR
[25] A Robust Finite Element Method for Darcy-Stokes Flow, SIAM Journal on Numerical Analysis, Volume 40 (2002) no. 5, pp. 1605-1631 | DOI | MR | Zbl
[26] Strong coupling of finite element methods for the Stokes-Darcy problem, IMA J. Numer. Anal., Volume 35 (2015) no. 2, pp. 969-988 | DOI | MR | Zbl
[27] Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003, xiv+450 pages | DOI | Zbl
[28] Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration, Chemical Engineering Science, Volume 53 (1998) no. 6, pp. 1253-1265 | DOI
[29] Mixed finite elements in , Numer. Math., Volume 35 (1980) no. 3, pp. 315-341 | DOI
[30] Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration, Annals of Biomedical Engineering, Volume 42 (2014) no. 6, pp. 1319-1330 | DOI
[31] A nonconforming rectangular finite element pair for the Darcy-Stokes-Brinkman model, Numerical Methods for Partial Differential Equations, Volume 29 (2013) no. 2, pp. 510-530 | DOI | MR | Zbl
[32] On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Models Methods Appl. Sci., Volume 17 (2007) no. 2, pp. 215-252 | DOI | MR
[33] A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin, 1977, p. 292-315. Lecture Notes in Math., Vol. 606 | Zbl
[34] Computational simulation modelling of bioreactor configurations for regenerating human bladder, Computer Methods in Biomechanics and Biomedical Engineering, Volume 16 (2013) no. 8, pp. 840-851 (PMID: 22224865) | DOI
[35] A discrete de Rham complex with enhanced smoothness, Calcolo, Volume 43 (2006) no. 4, pp. 287-306 | DOI | MR | Zbl
[36] A Mixed Formulation for the Brinkman Problem, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 1, pp. 258-281 | DOI | MR | Zbl
[37] Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math., Volume 26 (2008) no. 3, pp. 437-455 | MR | Zbl
[38] A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput., Volume 32 (2010) no. 2, pp. 855-874 | DOI | MR | Zbl
Cité par Sources :