Recent advances in numerical methods for solving the wave equation in the context of seismic depth imaging
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 47-65.

In this paper, we present the recent advances in using discontinuous Galerkin method for solving wave equation in the context of seismic depth imaging and full wave inversion. We show some examples and the way forward to some advanced schemes coupling different numerical approximations we believe will provide the necessary tools for building the next seismic depth imaging generation codes for TOTAL Exploration&Production. This contribution is linked to the mini symposium (MS) Mathematical tools in energy industry (organized at Arcachon during the 9th International conference Curves and Surfaces).

Publié le :
DOI : 10.5802/smai-jcm.51
Mots clés : Numerical analysis, approximation, energy, HPC, finite elements method, Discontinuous Galerkin method, seismic depth imaging.
Calandra, Henri 1 ; Lambert, Zoé 2 ; Gout, Christian 3 ; Atle, Andreas 1 ; Bonnasse-Gahot, Marie 1 ; Diaz, Julien 4 ; Ettouati, Simon 1

1 TOTAL SA, 64000 Pau, France
2 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France
3 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France, and INRIA Bordeaux Sud Ouest - Magique3D, 64000 Pau, France
4 INRIA Bordeaux Sud Ouest - Magique3D, 64000 Pau, France
@article{SMAI-JCM_2019__S5__47_0,
     author = {Calandra, Henri and Lambert, Zo\'e and Gout, Christian and Atle, Andreas and Bonnasse-Gahot, Marie and Diaz, Julien and Ettouati, Simon},
     title = {Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging},
     journal = {The SMAI Journal of computational mathematics},
     pages = {47--65},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.51},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.51/}
}
TY  - JOUR
AU  - Calandra, Henri
AU  - Lambert, Zoé
AU  - Gout, Christian
AU  - Atle, Andreas
AU  - Bonnasse-Gahot, Marie
AU  - Diaz, Julien
AU  - Ettouati, Simon
TI  - Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 47
EP  - 65
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.51/
DO  - 10.5802/smai-jcm.51
LA  - en
ID  - SMAI-JCM_2019__S5__47_0
ER  - 
%0 Journal Article
%A Calandra, Henri
%A Lambert, Zoé
%A Gout, Christian
%A Atle, Andreas
%A Bonnasse-Gahot, Marie
%A Diaz, Julien
%A Ettouati, Simon
%T Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging
%J The SMAI Journal of computational mathematics
%D 2019
%P 47-65
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.51/
%R 10.5802/smai-jcm.51
%G en
%F SMAI-JCM_2019__S5__47_0
Calandra, Henri; Lambert, Zoé; Gout, Christian; Atle, Andreas; Bonnasse-Gahot, Marie; Diaz, Julien; Ettouati, Simon. Recent advances in numerical methods for solving  the wave equation in the context of seismic depth imaging. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 47-65. doi : 10.5802/smai-jcm.51. http://www.numdam.org/articles/10.5802/smai-jcm.51/

[1] Barucq, H.; Frelet, T. Chaumont; Gout, C. Stability analysis of heterogeous Helmholtz problems and finite element solution based on propagation media approximation, Math. Comput., Volume 86 (2017) no. 307, pp. 2129-2157 | DOI | Zbl

[2] Baysal, E.; Kosloff, D. D.; Sherwood, W. C. Reverse time migration, Geophysics, Volume 48 (1983) no. 11, pp. 1514-1524 | DOI

[3] Bonnasse-Gahot, M. Simulation de la propagation d’ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues, Université de Nice - Sophia Antipolis - UFR Science, École Doctorale des Sciences Fondamentales et Appliqueées - ED 364 (2015) (Ph. D. Thesis)

[4] Chan, J.; Warburton, T. GPU-Accelerated Bernstein-Bézier Discontinuous Galerkin Methods for Wave Problems, SIAM J. Sci. Comput., Volume 39 (2017) no. 2, pp. 628-654 | DOI | Zbl

[5] Claerbout, J. F. Toward a unified theory of reflector mapping, Geophysics, Volume 36 (1971) no. 3, pp. 467-481 | DOI

[6] Dablain, M. The application of high-order differencing to the scalar wave equation, Geophysics, Volume 51 (1986) no. 1, pp. 54-66 | DOI

[7] Dumbser, M.; Käser, M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II The three-dimensional isotropic case, Geophys. J. Int., Volume 167 (2006), pp. 319-336 | DOI

[8] Etienne, V.; Chaljub, E.; Virieux, J.; Glinsky, N. An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophys. J. Int., Volume 183 (2010) no. 2, pp. 941-962 | DOI

[9] Gout, C.; Lambert, Z.; Apprato, D. Data approximation : mathematical modelling and numerical simulations, EDP Sciences; INSA Rouen Normandie, 2019, 168 pages

[10] Graves, R. W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., Volume 86 (1996) no. 4, pp. 1091-1106 | MR

[11] Hesthaven, J.; Warburton, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, 2008 | Zbl

[12] Käser, M.; Dumbser, M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophys. J. Int., Volume 166 (2006) no. 2, pp. 855-877 | DOI

[13] Kelly, K. R.; Ward, R. W.; Treitel, Sven; Alford, R. M. Synthetic seismograms: A finite-difference approach, Geophysics, Volume 41 (1976), pp. 2-27 | DOI

[14] Klöckner, A. High-Performance High-Order Simulation of Wave and Plasma Phenomena, Dipl.-Math. techn., Universität Karlsruhe (TH), Karlsruhe, Germany (2005) (Ph. D. Thesis)

[15] Komatitsch, D.; Tromp, J. Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., Volume 139 (1999) no. 3, pp. 806-822 | DOI

[16] Marfurt, K. Accuracy of finite-difference and finite-elements modeling of the scalar and elastic wave equation, Geophysics, Volume 49 (1984), pp. 533-549 | DOI

[17] Riviere, B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Society for Industrial and Applied Mathematics, 2008 | Zbl

[18] Virieux, J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, Volume 51 (1986), pp. 889-901 | DOI

[19] Virieux, J.; Etienne, V.; Cruz-Atienza, V. Modelling Seismic Wave Propagation for Geophysical Imaging, Seismic Waves – Research and Analysis, IntechOpen, 2012, pp. 253-304 | DOI

[20] Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics, Geophysics, Volume 74 (2009) no. 6, pp. 1-26 | DOI

Cité par Sources :