Analytical approach to Galerkin BEMs on polyhedral surfaces
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 27-46.

In this paper, we present a contribution linked to the mini symposium (MS) Mathematical tools in energy industry (organised at Arcachon during the 9th International conference Curves and Surfaces). Boundary Element Methods (BEM) have recently had a renewed interest in the field of wind energy as they allow to model more of the unsteady flow phenomena around wind turbine airfoils than Blade Element Momentum theory. Though being computationally more complex, their costs are still significantly lower than CFD methods, placing them in a sweet-spot for the validation of turbine designs under various conditions (yaw, turbulent wind). Based on the results of Lenoir and Salles ([8, 9]), the aim of this work is to find generalised formulas for some integrals involved in Galerkin BEM method for efficient parallelisation and to reduce the computational costs wherever possible.

Publié le :
DOI : 10.5802/smai-jcm.50
Mots clés : Numerical analysis, approximation, energy, HPC, finite elements method, boundary element methods, Galerkin method, DG method.
Warncke, Norbert G. W. 1 ; Ciotir, Ioana 2 ; Tonnoir, Antoine 2 ; Lambert, Zoé 2 ; Gout, Christian 3

1 Siemens Gamesa Renewable Energy
2 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France
3 LMI, Normandie Univ., INSA Rouen, 76000 Rouen, France; and Magique 3D - Advanced 3D Numerical Modeling in Geophysics, Inria Bordeaux - Sud-Ouest [Pau], France
@article{SMAI-JCM_2019__S5__27_0,
     author = {Warncke, Norbert G. W. and Ciotir, Ioana and Tonnoir, Antoine and Lambert, Zo\'e and Gout, Christian},
     title = {Analytical approach to {Galerkin} {BEMs} on polyhedral surfaces},
     journal = {The SMAI Journal of computational mathematics},
     pages = {27--46},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.50},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.50/}
}
TY  - JOUR
AU  - Warncke, Norbert G. W.
AU  - Ciotir, Ioana
AU  - Tonnoir, Antoine
AU  - Lambert, Zoé
AU  - Gout, Christian
TI  - Analytical approach to Galerkin BEMs on polyhedral surfaces
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 27
EP  - 46
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.50/
DO  - 10.5802/smai-jcm.50
LA  - en
ID  - SMAI-JCM_2019__S5__27_0
ER  - 
%0 Journal Article
%A Warncke, Norbert G. W.
%A Ciotir, Ioana
%A Tonnoir, Antoine
%A Lambert, Zoé
%A Gout, Christian
%T Analytical approach to Galerkin BEMs on polyhedral surfaces
%J The SMAI Journal of computational mathematics
%D 2019
%P 27-46
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.50/
%R 10.5802/smai-jcm.50
%G en
%F SMAI-JCM_2019__S5__27_0
Warncke, Norbert G. W.; Ciotir, Ioana; Tonnoir, Antoine; Lambert, Zoé; Gout, Christian. Analytical approach to Galerkin BEMs on polyhedral surfaces. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 27-46. doi : 10.5802/smai-jcm.50. http://www.numdam.org/articles/10.5802/smai-jcm.50/

[1] Abdelsalam, A. Higher-Order Panel Method for Wind Turbine Flow Solver, École Polytechnique (France) (2015) (Masters thesis)

[2] ambert, Z.; Gout, C.; Baccou, J.; Calandra, H.; Caruso, J.; Warncke, N. G. W. Mathematical tools in Energy Industry, Matapli, Volume 118 (2019), pp. 23-38

[3] Calandra, H.; Lambert, Z.; Gout, C.; Atle, A.; Bonnasse-Gahot, M.; Diaz, J.; Ettouati, S. Recent advances in numerical methods for solving the wave equation in the context of seismic depth imaging, SMAI J. Comput. Math. (2019) (to appear)

[4] D’Eliá, J.; Storti, M.; Idelsohn, S. A closed form for low-order panel methods, Advances in Engineering Software, Volume 31 (2000) no. 5, pp. 347-353 | DOI | Zbl

[5] Gout, C.; Lambert, Z.; Apprato, D. Data approximation : mathematical modelling and numerical simulations, EDP Sciences, 2019, 168 pages

[6] Hess, J. L.; Smith, A. M. O. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies (1962) (Technical report)

[7] Hess, J. L.; Smith, A. M. O. Calculation of potential flow about arbitrary bodies, Progress in Aerospace Sciences, Volume 8 (1967), pp. 1-138 | DOI | Zbl

[8] Lenoir, M.; Salles, N. Evaluation of 3-D singular and nearly singular integrals in Galerkin BEM for thin layers, SIAM J. Sci. Comput., Volume 34 (2012) no. 6, p. A3057-A3078 | DOI | MR | Zbl

[9] Lenoir, M.; Salles, N. Exact evaluation of singular and near-singular integrals in Galerkin BEM, Proceedings of ECCOMAS 2012 (2012), pp. 1-20

[10] NIST handbook of mathematical functions hardback and CD-ROM (Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., eds.), Cambridge University Press, 2010

[11] Salles, N. Calculation of singularities in variational integral equations methods, Université Paris Sud - Paris XI (France) (2013) (Ph. D. Thesis https://pastel.archives-ouvertes.fr/tel-00877482)

[12] Sauter, S. A.; Schwab, C. Boundary Element Methods, Boundary Element Methods, Springer, 2010, pp. 183-287 | DOI

[13] Van Oosterom, A.; Strackee, J. The solid angle of a plane triangle, IEEE transactions on Biomedical Engineering, Volume BME-30 (1983) no. 2, pp. 125-126 | DOI

Cité par Sources :