Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 3-25.

With the increasing need for volumetric B-spline representations and the lack of methodologies for creating semi-structured volumetric B-spline representations from B-spline Boundary Representations (B-Rep), hybrid approaches combining semi-structured volumetric B-splines and unstructured Bézier tetrahedra have been introduced, including one that transforms a trimmed B-spline B-Rep first to an untrimmed Hybrid B-Rep (HB-Rep) and then to a Hybrid Volume Representation (HV-Rep). Generally, the effect of h-refinement has not been considered over B-spline hybrid representations. Standard refinement approches to tensor product B-splines and subdivision of Bézier triangles and tetrahedra must be adapted to this representation. In this paper, we analyze possible types of h-refinement of the HV-Rep. The revised and trim basis functions for HB- and HV-rep depend on a partition of knot intervals. Therefore, a naive h-refinement can change basis functions in unexpected ways. This paper analyzes the the effect of h-refinement in reducing error as well. Different h-refinement strategies are discussed. We demonstrate their differences and compare their respective consequential trade-offs. Recommendations are also made for different use cases.

Publié le :
DOI : 10.5802/smai-jcm.49
Classification : 65D17
Mots clés : $h$-refinement, Trimmed model, Volume completion
Song, Yang 1 ; Cohen, Elaine 1

1 School of Computing, University of Utah, Salt Lake City, UT, USA
@article{SMAI-JCM_2019__S5__3_0,
     author = {Song, Yang and Cohen, Elaine},
     title = {Refinement for a {Hybrid} {Boundary} {Representation} and its {Hybrid} {Volume} {Completion}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {3--25},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.49},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.49/}
}
TY  - JOUR
AU  - Song, Yang
AU  - Cohen, Elaine
TI  - Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 3
EP  - 25
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.49/
DO  - 10.5802/smai-jcm.49
LA  - en
ID  - SMAI-JCM_2019__S5__3_0
ER  - 
%0 Journal Article
%A Song, Yang
%A Cohen, Elaine
%T Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion
%J The SMAI Journal of computational mathematics
%D 2019
%P 3-25
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.49/
%R 10.5802/smai-jcm.49
%G en
%F SMAI-JCM_2019__S5__3_0
Song, Yang; Cohen, Elaine. Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 3-25. doi : 10.5802/smai-jcm.49. http://www.numdam.org/articles/10.5802/smai-jcm.49/

[1] Akhras, H. Al; Elguedj, T.; Gravouil, A.; Rochette, M. Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models, Computer Methods in Applied Mechanics and Engineering, Volume 307 (2016), pp. 256-274 | DOI | MR

[2] Akhras, H. Al; Elguedj, T.; Gravouil, A.; Rochette, M. Towards an automatic isogeometric analysis suitable trivariate models generation-Application to geometric parametric analysis, Computer Methods in Applied Mechanics and Engineering, Volume 316 (2017), pp. 623-645 | DOI | MR

[3] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J. R. Isogeometric finite element data structures based on Bézier extraction of NURBS, International Journal for Numerical Methods in Engineering, Volume 87 (2011) no. 1-5, pp. 15-47 | DOI | Zbl

[4] Chan, J.; Warburton, T. A Short Note on a Bernstein–Bézier Basis for the Pyramid, SIAM J. Sci. Comput., Volume 38 (2016) no. 4, p. A2162-A2172 | DOI | Zbl

[5] Cohen, E.; Riesenfeld, R. F.; Elber, G. Geometric modeling with splines : an introduction, A. K. Peters, 2001 | DOI | Zbl

[6] Cottrell, J. A.; Hughes, T. J. R.; Bazilevs, Y. Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley Publishing, 2009 | Zbl

[7] Engvall, L.; Evans, J. A. Isogeometric unstructured tetrahedral and mixed-element Bernstein-Bézier discretizations, Computer Methods in Applied Mechanics and Engineering, Volume 319 (2017), pp. 83-123 | DOI

[8] Gao, X.; Martin, T.; Deng, S.; Cohen, E.; Deng, Z.; Chen, G. Structured Volume Decomposition via Generalized Sweeping, Visualization and Computer Graphics, IEEE Transactions on, Volume PP (2015) no. 99, p. 1-1 | DOI

[9] Liu, L.; Zhang, Y.; Hughes, T. J. R.; Scott, M. A.; Sederberg, T. W. Volumetric T-spline construction using Boolean operations, Engineering with Computers, Volume 30 (2014) no. 4, pp. 425-439 | DOI

[10] Martin, T.; Cohen, E. Volumetric parameterization of complex objects by respecting multiple materials, Computers & Graphics, Volume 34 (2010) no. 3, pp. 187-197 Shape Modelling International (SMI) Conference 2010 | DOI

[11] Martin, T.; Cohen, E.; Kirby, R. M. Mixed-element volume completion from NURBS surfaces, Computers & Graphics, Volume 36 (2012) no. 5, pp. 548-554 Shape Modeling International (SMI) Conference 2012 | DOI

[12] Marussig, B.; Hughes, T. J. R. A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects, Archives of Computational Methods in Engineering, Volume 25 (2018) no. 4, pp. 1059-1127 | DOI | MR

[13] O’Rourke, J.; Tewari, G. The structure of optimal partitions of orthogonal polygons into fat rectangles, Computational Geometry, Volume 28 (2004) no. 1, pp. 49-71 (14th Canadian Conference on Computational Geometry-CCCG02) | DOI | MR | Zbl

[14] Sederberg, T. W.; Finnigan, G. T.; Li, X.; Lin, H.; Ipson, H. Watertight Trimmed NURBS, ACM SIGGRAPH 2008 Papers, ACM (2008), p. 79:1-79:8

[15] Shen, J.; Kosinka, J.; Sabin, M. A.; Dodgson, N. A. Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces, Computer Aided Geometric Design, Volume 31 (2014), pp. 486-498 (Recent Trends in Theoretical and Applied Geometry) | DOI | MR | Zbl

[16] Shen, J.; Kosinka, J.; Sabin, M. A.; Dodgson, N. A. Converting a CAD model into a non-uniform subdivision surface, Computer Aided Geometric Design, Volume 48 (2016), pp. 17-35 | DOI | MR | Zbl

[17] Song, Y.; Cohen, E. Creating Hybrid B-Reps and Hybrid Volume Completions from Trimmed B-Spline B-Reps (2019) (Technical report)

[18] Song, Y.; Cohen, E. Making Trimmed B-Spline B-Reps Watertight With a Hybrid Representation, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2019) (to appear)

[19] Xia, S.; Qian, X. Isogeometric analysis with Bézier tetrahedra, Computer Methods in Applied Mechanics and Engineering, Volume 316 (2017), pp. 782-816 (Special Issue on Isogeometric Analysis: Progress and Challenges) | DOI

[20] Xia, S.; Wang, X.; Qian, X. Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, Volume 297 (2015), pp. 292-324 | DOI | Zbl

[21] Xu, G.; Jin, Y.; Xiao, Z.; Wu, Q.; Mourrain, B.; Rabczuk, T. Exact conversion from Bézier tetrahedra to Bézier hexahedra, Computer Aided Geometric Design, Volume 62 (2018), pp. 154-165 | DOI | Zbl

[22] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications, Computer-Aided Design (2013), pp. 395-404 | DOI | MR

[23] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., Volume 252 (2013), pp. 275-289 | DOI | MR | Zbl

[24] Zeng, S.; Cohen, E. Hybrid Volume Completion with Higher-order BéZier Elements, Comput. Aided Geom. Des., Volume 35 (2015) no. C, pp. 180-191 | DOI | Zbl

[25] Zhang, Y.; Wang, W.; Hughes, T. J. R. Solid T-spline construction from boundary representations for genus-zero geometry, Computer Methods in Applied Mechanics and Engineering, Volume 249-252 (2012), pp. 185-197 (Higher Order Finite Element and Isogeometric Methods) | DOI | MR | Zbl

Cité par Sources :