Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation
The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 151-195.

A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an L 2 –gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary conditions have to hold. Here we consider both C 0 – and C 1 –matching conditions for the surface at the interface. A new weak formulation is introduced, allowing for a stable semidiscrete parametric finite element approximation of the governing equations. In addition, we show existence and uniqueness for a fully discrete version of the scheme. Numerical simulations demonstrate that the approach can deal with a multitude of geometries. In particular, the paper shows the first computations based on a sharp interface description, which are not restricted to the axisymmetric case.

Publié le :
DOI : 10.5802/smai-jcm.32
Classification : 35R01, 49Q10, 65M12, 65M60, 82B26, 92C10
Mots clés : parametric finite elements, Helfrich energy, spontaneous curvature, multi-phase membrane, line energy, $C^0$– and $C^1$–matching conditions
Barrett, John W. 1 ; Garcke, Harald 2 ; Nürnberg, Robert 1

1 Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
2 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@article{SMAI-JCM_2018__4__151_0,
     author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert},
     title = {Gradient flow dynamics of two-phase biomembranes: {Sharp} interface variational formulation and finite element approximation},
     journal = {The SMAI Journal of computational mathematics},
     pages = {151--195},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.32},
     zbl = {1416.74070},
     mrnumber = {3796942},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.32/}
}
TY  - JOUR
AU  - Barrett, John W.
AU  - Garcke, Harald
AU  - Nürnberg, Robert
TI  - Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 151
EP  - 195
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.32/
DO  - 10.5802/smai-jcm.32
LA  - en
ID  - SMAI-JCM_2018__4__151_0
ER  - 
%0 Journal Article
%A Barrett, John W.
%A Garcke, Harald
%A Nürnberg, Robert
%T Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation
%J The SMAI Journal of computational mathematics
%D 2018
%P 151-195
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.32/
%R 10.5802/smai-jcm.32
%G en
%F SMAI-JCM_2018__4__151_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. Gradient flow dynamics of two-phase biomembranes: Sharp interface variational formulation and finite element approximation. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 151-195. doi : 10.5802/smai-jcm.32. http://www.numdam.org/articles/10.5802/smai-jcm.32/

[1] Abels, H.; Garcke, H.; Müller, L. Local well-posedness for volume-preserving mean curvature and Willmore flows with line tension, Math. Nachr., Volume 289 (2016) no. 2–3, pp. 136-174 | DOI | Zbl

[2] Barrett, J. W.; Garcke, H.; Nürnberg, R. A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys., Volume 222 (2007) no. 1, pp. 441-462 | DOI | MR | Zbl

[3] Barrett, J. W.; Garcke, H.; Nürnberg, R. On the parametric finite element approximation of evolving hypersurfaces in 3 , J. Comput. Phys., Volume 227 (2008) no. 9, pp. 4281-4307 | DOI | MR | Zbl

[4] Barrett, J. W.; Garcke, H.; Nürnberg, R. Parametric Approximation of Surface Clusters driven by Isotropic and Anisotropic Surface Energies, Interfaces Free Bound., Volume 12 (2010) no. 2, pp. 187-234 | DOI | MR | Zbl

[5] Barrett, J. W.; Garcke, H.; Nürnberg, R. The Approximation of Planar Curve Evolutions by Stable Fully Implicit Finite Element Schemes that Equidistribute, Numer. Methods Partial Differential Equations, Volume 27 (2011) no. 1, pp. 1-30 | DOI | MR | Zbl

[6] Barrett, J. W.; Garcke, H.; Nürnberg, R. Elastic flow with junctions: Variational approximation and applications to nonlinear splines, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 11, 1250037 pages | DOI | MR | Zbl

[7] Barrett, J. W.; Garcke, H.; Nürnberg, R. On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant, M2AN Math. Model. Numer. Anal., Volume 49 (2015) no. 2, pp. 421-458 | DOI | MR | Zbl

[8] Barrett, J. W.; Garcke, H.; Nürnberg, R. Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity effects, SIAM J. Numer. Anal., Volume 54 (2016) no. 3, pp. 1732-1762 | DOI | MR | Zbl

[9] Barrett, J. W.; Garcke, H.; Nürnberg, R. Finite Element Approximation for the Dynamics of Fluidic Two-Phase Biomembranes, M2AN Math. Model. Numer. Anal., Volume 51 (2017) no. 6, pp. 2319-2366 | DOI | MR | Zbl

[10] Barrett, J. W.; Garcke, H.; Nürnberg, R. Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature, IMA J. Numer. Anal., Volume 37 (2017) no. 4, pp. 1657-1709 | DOI | MR | Zbl

[11] Baumgart, T.; Das, S.; Webb, W. W.; Jenkins, J.T. Membrane Elasticity in Giant Vesicles with Fluid Phase Coexistence, Biophys. J., Volume 89 (2005) no. 2, pp. 1067-1080 | DOI

[12] Baumgart, T.; T., Hess; S.; Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, Volume 425 (2003) no. 6960, pp. 821-824 | DOI

[13] Choksi, R.; Morandotti, M.; Veneroni, M. Global minimizers for axisymmetric multiphase membranes, ESAIM Control Optim. Calc. Var., Volume 19 (2013) no. 4, pp. 1014-1029 | DOI | Numdam | MR | Zbl

[14] Cox, G.; Lowengrub, J. The effect of spontaneous curvature on a two-phase vesicle, Nonlinearity, Volume 28 (2015) no. 3, pp. 773-793 | DOI | MR | Zbl

[15] Das, S.L.; Jenkins, J.T.; Baumgart, T. Neck geometry and shape transitions in vesicles with co-existing fluid phases: Role of Gaussian curvature stiffness vs. spontaneous curvature, Europhys. Lett., Volume 86 (2009) no. 4, 48003 pages

[16] Davis, T. A. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, Volume 30 (2004) no. 2, pp. 196-199 | DOI | MR | Zbl

[17] Deckelnick, K.; Dziuk, G.; Elliott, C. M. Computation of geometric partial differential equations and mean curvature flow, Acta Numer., Volume 14 (2005), pp. 139-232 | DOI | MR | Zbl

[18] Deckelnick, K.; Grunau, H.-C.; Röger, M. Minimising a relaxed Willmore functional for graphs subject to boundary conditions, Interfaces Free Bound., Volume 19 (2017) no. 1, pp. 109-140 | DOI | MR | Zbl

[19] Dziuk, G. An algorithm for evolutionary surfaces, Numer. Math., Volume 58 (1991) no. 6, pp. 603-611 | DOI | MR | Zbl

[20] Dziuk, G. Computational parametric Willmore flow, Numer. Math., Volume 111 (2008) no. 1, pp. 55-80 | DOI | MR | Zbl

[21] Dziuk, G.; Elliott, C. M. Finite element methods for surface PDEs, Acta Numer., Volume 22 (2013), pp. 289-396 | DOI | MR | Zbl

[22] Elliott, C. M.; Stinner, B. Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys., Volume 229 (2010) no. 18, pp. 6585-6612 | DOI | MR | Zbl

[23] Elliott, C. M.; Stinner, B. A surface phase field model for two-phase biological membranes, SIAM J. Appl. Math., Volume 70 (2010) no. 8, pp. 2904-2928 | DOI | MR | Zbl

[24] Elliott, C.M.; Stinner, B. Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements, Commun. Comput. Phys., Volume 13 (2013) no. 2, pp. 325-360 | DOI | MR | Zbl

[25] Helmers, M. Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 5, pp. 1027-1042 | DOI | MR | Zbl

[26] Helmers, M. Kinks in two-phase lipid bilayer membranes, Calc. Var. Partial Differential Equations, Volume 48 (2013) no. 1-2, pp. 211-242 | DOI | MR | Zbl

[27] Helmers, M. Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes, Q. J. Math., Volume 66 (2015) no. 1, pp. 143-170 | DOI | MR | Zbl

[28] Jülicher, F.; Lipowsky, R. Domain-induced budding of vesicles, Phys. Rev. Lett., Volume 70 (1993) no. 19, pp. 2964-2967 | DOI

[29] Jülicher, F.; Lipowsky, R. Shape transformations of vesicles with intramembrane domains, Phys. Rev. E, Volume 53 (1996) no. 3, pp. 2670-2683 | DOI

[30] Lowengrub, J. S.; Rätz, A.; Voigt, A. Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission, Phys. Rev. E, Volume 79 (2009) no. 3, 0311926 pages | DOI | MR

[31] Mercker, M.; Marciniak-Czochra, A. Bud-Neck Scaffolding as a Possible Driving Force in ESCRT-Induced Membrane Budding, Biophys. J., Volume 108 (2015) no. 4, pp. 833-843 | DOI

[32] Mercker, M.; Marciniak-Czochra, A.; Richter, T.; Hartmann, D. Modeling and computing of deformation dynamics of inhomogeneous biological surfaces, SIAM J. Appl. Math., Volume 73 (2013) no. 5, pp. 1768-1792 | DOI | MR | Zbl

[33] Nitsche, J. C. C. Boundary value problems for variational integrals involving surface curvatures, Quart. Appl. Math., Volume 51 (1993) no. 2, pp. 363-387 | DOI | MR | Zbl

[34] Schmidt, A.; Siebert, K. G. Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, 42, Springer-Verlag, Berlin, 2005 | MR | Zbl

[35] Schmidt, S.; Schulz, V. Shape derivatives for general objective functions and the incompressible Navier–Stokes equations, Control Cybernet., Volume 39 (2010) no. 3, pp. 677-713 | MR | Zbl

[36] Taylor, M. E. Partial differential equations I. Basic theory, Applied Mathematical Sciences, 115, Springer, 2011 | MR | Zbl

[37] Tröltzsch, F. Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, 112, American Mathematical Society, Providence, RI, 2010, xvi+399 pages | MR | Zbl

[38] Tu, Z.-C. Challenges in theoretical investigations of configurations of lipid membranes, Chin. Phys. B, Volume 22 (2013) no. 2, 28701 pages | DOI

[39] Tu, Z. C.; Ou-Yang, Z. C. A geometric theory on the elasticity of bio-membranes, J. Phys. A, Volume 37 (2004) no. 47, pp. 11407-11429 | DOI | MR | Zbl

[40] Wang, X.; Du, Q. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches, J. Math. Biol., Volume 56 (2008) no. 3, pp. 347-371 | DOI | MR | Zbl

[41] Wutz, C. Variationsprobleme für elastische Biomembranen unter Berücksichtigung von Linienenergien, University Regensburg (2010) Diploma thesis (appeared as Preprint 03/2017, University Regensburg, Germany)

Cité par Sources :