Shape optimisation with the level set method for contact problems in linearised elasticity
The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 249-292.

This article is devoted to shape optimisation of contact problems in linearised elasticity, thanks to the level set method. We circumvent the shape non-differentiability, due to the contact boundary conditions, by using penalised and regularised versions of the mechanical problem. This approach is applied to five different contact models: the frictionless model, the Tresca model, the Coulomb model, the normal compliance model and the Norton-Hoff model. We consider two types of optimisation problems in our applications: first, we minimise volume under a compliance constraint, second, we optimise the normal force, with a volume constraint, which is useful to design compliant mechanisms. To illustrate the validity of the method, 2D and 3D examples are performed, the 3D examples being computed with an industrial software.

Publié le :
DOI : 10.5802/smai-jcm.27
Classification : 74P05, 75P10, 74P15, 74M10, 74M15, 49Q10, 49Q12, 35J85
Mots clés : Shape and topology Optimisation; Level set method; Unilateral contact problems; Frictional contact; Penalisation and Regularisation
Maury, Aymeric 1 ; Allaire, Grégoire 2 ; Jouve, François 1

1 Laboratoire J.L. Lions (UMR CNRS 7598), University Paris Diderot, Paris, France
2 CMAP (UMR CNRS 7641), Ecole Polytechnique, Palaiseau, France
@article{SMAI-JCM_2017__3__249_0,
     author = {Maury, Aymeric and Allaire, Gr\'egoire and Jouve, Fran\c{c}ois},
     title = {Shape optimisation with the level set method for contact problems in linearised elasticity},
     journal = {The SMAI Journal of computational mathematics},
     pages = {249--292},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {3},
     year = {2017},
     doi = {10.5802/smai-jcm.27},
     zbl = {1416.74079},
     mrnumber = {3722942},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.27/}
}
TY  - JOUR
AU  - Maury, Aymeric
AU  - Allaire, Grégoire
AU  - Jouve, François
TI  - Shape optimisation with the level set method for contact problems in linearised elasticity
JO  - The SMAI Journal of computational mathematics
PY  - 2017
SP  - 249
EP  - 292
VL  - 3
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.27/
DO  - 10.5802/smai-jcm.27
LA  - en
ID  - SMAI-JCM_2017__3__249_0
ER  - 
%0 Journal Article
%A Maury, Aymeric
%A Allaire, Grégoire
%A Jouve, François
%T Shape optimisation with the level set method for contact problems in linearised elasticity
%J The SMAI Journal of computational mathematics
%D 2017
%P 249-292
%V 3
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.27/
%R 10.5802/smai-jcm.27
%G en
%F SMAI-JCM_2017__3__249_0
Maury, Aymeric; Allaire, Grégoire; Jouve, François. Shape optimisation with the level set method for contact problems in linearised elasticity. The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 249-292. doi : 10.5802/smai-jcm.27. http://www.numdam.org/articles/10.5802/smai-jcm.27/

[1] Allaire, G. Conception optimale de structures, Mathématiques & Applications [Mathematics & Applications], 58, Springer-Verlag, Berlin, 2007, xii+278 pages | MR | Zbl

[2] Allaire, G.; Jouve, F.; Toader, A.-M. Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, Volume 194 (2004) no. 1, pp. 363-393 | DOI | MR | Zbl

[3] Amassad, A.; Chenais, D.; Fabre, C. Optimal control of an elastic contact problem involving Tresca friction law, Nonlinear Anal., Volume 48 (2002) no. 8, Ser. A: Theory Methods, pp. 1107-1135 | DOI | MR | Zbl

[4] Andersson, J. Optimal regularity and free boundary regularity for the Signorini problem, Algebra i Analiz, Volume 24 (2012) no. 3, pp. 1-21 | DOI | MR | Zbl

[5] Andersson, J. Optimal regularity for the Signorini problem and its free boundary, Invent. Math., Volume 204 (2016) no. 1, pp. 1-82 | DOI | MR | Zbl

[6] Barbu, V. Optimal control of variational inequalities, Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, MA, 1984, iv+298 pages | MR | Zbl

[7] Beremlijski, P.; Haslinger, J.; Kočvara, M.; Outrata, J.V. Shape optimization in contact problems with Coulomb friction, SIAM J. Optim., Volume 13 (2002) no. 2, pp. 561-587 | DOI | MR | Zbl

[8] Beremlijski, P.; Haslinger, J.; Outrata, J.V.; Pathó, R. Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient, SIAM J. Control Optim., Volume 52 (2014) no. 5, pp. 3371-3400 | DOI | MR | Zbl

[9] Boieri, P.; Gastaldi, F.; Kinderlehrer, D. Existence, uniqueness, and regularity results for the two-body contact problem, Appl. Math. Optim., Volume 15 (1987) no. 3, pp. 251-277 | DOI | MR

[10] Céa, J. Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût, RAIRO Modél. Math. Anal. Numér., Volume 20 (1986) no. 3, pp. 371-402 | DOI | Numdam | MR | Zbl

[11] Chen, W.-H.; Ou, C.-R. Shape optimization in contact problems with desired contact traction distribution on the specified contact surface, Computational Mechanics, Volume 15 (1995), pp. 534-545 | DOI | Zbl

[12] Dennis, J.E. Jr.; Schnabel, R.B. Numerical methods for unconstrained optimization and nonlinear equations, Classics in Applied Mathematics, 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, xvi+378 pages (Corrected reprint of the 1983 original) | DOI | MR

[13] Desmorat, B. Structural rigidity optimization with frictionless unilateral contact, Internat. J. Solids Structures, Volume 44 (2007) no. 3-4, pp. 1132-1144 | DOI | MR | Zbl

[14] Drabla, S.; Sofonea, M.; Teniou, B. Analysis of a frictionless contact problem for elastic bodies, Ann. Polon. Math., Volume 69 (1998) no. 1, pp. 75-88 | DOI | MR | Zbl

[15] Duvaut, G.; Lions, J.L. Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, 21, Dunod, Paris, 1972, xx+387 pages | MR | Zbl

[16] Eck, C.; Jarusek, J.; Krbec, M. Unilateral contact problems, Variational methods and existence theorems, Pure and Applied Mathematics (Boca Raton), 270, Chapman & Hall/CRC, Boca Raton, FL, 2005, x+398 pages | DOI | MR | Zbl

[17] group, ESI SYSTUS: a multiphysics simulation software

[18] Glowinski, R.; Lions, J.L.; Trémolières, R. Analyse numérique des inéquations variationnelles. Tome 1, Théorie générale premières applications, Méthodes Mathématiques de l’Informatique, 5, Dunod, Paris, 1976, xii+268 pages | MR | Zbl

[19] Goldberg, H.; Kampowsky, W.; Tröltzsch, F. On Nemytskij operators in L p -spaces of abstract functions, Math. Nachr., Volume 155 (1992), pp. 127-140 | DOI | MR | Zbl

[20] Han, W. On the numerical approximation of a frictional contact problem with normal compliance, Numer. Funct. Anal. Optim., Volume 17 (1996) no. 3-4, pp. 307-321 | DOI | MR | Zbl

[21] Haslinger, J. Approximation of the Signorini problem with friction, obeying the Coulomb law, Math. Methods Appl. Sci., Volume 5 (1983) no. 3, pp. 422-437 | DOI | MR | Zbl

[22] Haslinger, J. Shape optimization in contact problems, Equadiff 6 (Brno, 1985), Univ. J. E. Purkyně, Brno (1986), pp. 445-450 | MR

[23] Haslinger, J. Signorini problem with Coulomb’s law of friction. Shape optimization in contact problems, Internat. J. Numer. Methods Engrg., Volume 34 (1992) no. 1, pp. 223-231 The Second World Congress of Computational Mechanics, Part I (Stuttgart, 1990) | DOI | MR | Zbl

[24] Haslinger, J.; Klarbring, A. Shape optimization in unilateral contact problems using generalized reciprocal energy as objective functional, Nonlinear Anal., Volume 21 (1993) no. 11, pp. 815-834 | DOI | MR | Zbl

[25] Haslinger, J.; Neittaanmäki, P. On the existence of optimal shapes in contact problems, Numer. Funct. Anal. Optim., Volume 7 (1984/85) no. 2-3, pp. 107-124 | DOI | MR | Zbl

[26] Haslinger, J.; Neittaanmäki, P. Shape optimization in contact problems. Approximation and numerical realization, RAIRO Modél. Math. Anal. Numér., Volume 21 (1987) no. 2, pp. 269-291 | DOI | Numdam | MR | Zbl

[27] Haslinger, J.; Neittaanmäki, P.; Tiihonen, T. Shape optimization in contact problems based on penalization of the state inequality, Apl. Mat., Volume 31 (1986) no. 1, pp. 54-77 | MR | Zbl

[28] Henrot, A.; Pierre, M. Variation et optimisation de formes, une analyse géométrique. [A geometric analysis], Mathématiques & Applications [Mathematics & Applications], 48, Springer, Berlin, 2005, xii+334 pages | DOI | MR | Zbl

[29] Herskovits, J; Leontiev, A; Dias, G; Santos, G Contact shape optimization: a bilevel programming approach, Structural and multidisciplinary optimization, Volume 20 (2000) no. 3, pp. 214-221 | DOI

[30] Hild, P. Two results on solution uniqueness and multiplicity for the linear elastic friction problem with normal compliance, Nonlinear Anal., Volume 71 (2009) no. 11, pp. 5560-5571 | DOI | MR | Zbl

[31] Hilding, D.; Klarbring, A.; Petersson, J. Optimization of structures in unilateral contact, ASME Appl Mech Rev, Volume 52 (1999) no. 4, pp. 1-4 | DOI

[32] Iwai, T.; Sugimoto, A.; Aoyama, T.; Azegami, H. Shape optimization problem of elastic bodies for controlling contact pressure, JSIAM Lett., Volume 2 (2010), pp. 1-4 | DOI | MR | Zbl

[33] Jarušek, J.; Outrata, J.V. On sharp necessary optimality conditions in control of contact problems with strings, Nonlinear Anal., Volume 67 (2007) no. 4, pp. 1117-1128 | DOI | MR | Zbl

[34] Kim, N.H.; Choi, K.K.; Chen, J.S. Shape Design Sensitivity Analysis and Optimization of Elasto-Plasticity with Frictional Contact, AIAA Journal, Volume 38 (2000) no. 9, pp. 1742-1753 | DOI

[35] Kim, N.H.; Choi, K.K.; Chen, J.S.; Park, Y.H. Meshless shape design sensitivity analysis and optimization for contact problem with friction, Computational Mechanics, Volume 25 (2000), pp. 157-168 | DOI

[36] Kinderlehrer, D.; Stampacchia, G. An introduction to variational inequalities and their applications, Pure and Applied Mathematics, 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980, xiv+313 pages | MR | Zbl

[37] Klarbring, A. On the problem of optimizing contact force distributions, J. Optim. Theory Appl., Volume 74 (1992) no. 1, pp. 131-150 | DOI | MR | Zbl

[38] Klarbring, A.; Mikelić, A.; Shillor, M. On friction problems with normal compliance, Nonlinear Anal., Volume 13 (1989) no. 8, pp. 935-955 | DOI | MR | Zbl

[39] Klarbring, A.; Mikelić, A.; Shillor, M. Optimal shape design in contact problems with normal compliance and friction, Appl. Math. Lett., Volume 5 (1992) no. 2, pp. 51-55 | DOI | MR | Zbl

[40] Knees, D.; Schröder, A. Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints, Math. Methods Appl. Sci., Volume 35 (2012) no. 15, pp. 1859-1884 | DOI | MR | Zbl

[41] Laborde, P.; Renard, Y. Fixed point strategies for elastostatic frictional contact problems, Math. Methods Appl. Sci., Volume 31 (2008) no. 4, pp. 415-441 | DOI | MR | Zbl

[42] Li, W.; Li, Q.; Steven, G. P; Xie, Y.M. An evolutionary shape optimization for elastic contact problems subject to multiple load cases, Computer methods in applied mechanics and engineering, Volume 194 (2005) no. 30, pp. 3394-3415 | DOI | Zbl

[43] Mankame, N.D.; Ananthasuresh, G.K. Topology optimization for synthesis of contact-aided compliant mechanisms using regularized contact modeling, International Conference on Modeling, Simulation and Optimization for Design of Multi-disciplinary Engineering Systems 24-26 September, Goa, India (2004)

[44] Mignot, F. Contrôle dans les inéquations variationelles elliptiques, Journal of Functional Analysis, Volume 22 (1976) no. 2, pp. 130-185 | DOI | Zbl

[45] Milne, I.; Ritchie, R.O.; Karihaloo, B. Comprehensive structural integrity, Elsevier Science, 2003

[46] Murat, F.; Simon, J. Etudes de problèmes d’optimal design, Lecture Notes in Computer Science, Springer Verlag, Berlin, Volume 41 (1976), pp. 54-62 | DOI | Zbl

[47] Oden, J. T.; Martins, J. A. C. Models and computational methods for dynamic friction phenomena, Comput. Methods Appl. Mech. Engrg., Volume 52 (1985) no. 1-3, pp. 527-634 FENOMECH ’84, Part III, IV (Stuttgart, 1984) | DOI | MR | Zbl

[48] Osher, S.; Fedkiw, R. Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, 153, Springer-Verlag, New York, 2003, xiv+273 pages | MR | Zbl

[49] Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49 | DOI | MR | Zbl

[50] Outrata, J.V. On the numerical solution of a class of Stackelberg problems, Z. Oper. Res., Volume 34 (1990) no. 4, pp. 255-277 | DOI | MR

[51] Outrata, J.V.; Jarušek, J.; Stará, J. On optimality conditions in control of elliptic variational inequalities, Set-Valued Var. Anal., Volume 19 (2011) no. 1, pp. 23-42 | DOI | MR | Zbl

[52] Paczelt, I.; Szabo, T. Optimal shape design for contact problems, Structural Optimization, Volume 7 (1994), pp. 66-75 | DOI

[53] Pironneau, O. Optimal shape design for elliptic systems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984, xii+168 pages | DOI | MR

[54] Schumann, R. Regularity for Signorini’s problem in linear elasticity, Manuscripta Math., Volume 63 (1989), pp. 255-291 | DOI | MR | Zbl

[55] Scilab Enterprises Scilab: Le logiciel open source gratuit de calcul numérique (2012) http://www.scilab.org

[56] Sethian, J.A. Level set methods and fast marching methods, Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, Cambridge Monographs on Applied and Computational Mathematics, 3, Cambridge University Press, Cambridge, 1999, xx+378 pages | MR | Zbl

[57] Simon, J. Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., Volume 2 (1980) no. 7-8, p. 649-687 (1981) | DOI | MR | Zbl

[58] Sokolowski, J.; Zolesio, J-P. Introduction to shape optimization, shape sensitivity analysis, Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992, ii+250 pages | DOI | MR | Zbl

[59] Strömberg, N.; Klarbring, A. Topology Optimization of Structures with Contact Constraints by using a Smooth Formulation and a Nested Approach, 8th World Congress on Structural and Multidisciplinary Optimization (2009)

[60] Strömberg, N.; Klarbring, A. Topology optimization of structures in unilateral contact, Struct. Multidiscip. Optim., Volume 41 (2010) no. 1, pp. 57-64 | DOI | MR | Zbl

[61] Stupkiewicz, S.; Lengiewicz, J.; Korelc, J. Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation, Comput. Methods Appl. Mech. Engrg., Volume 199 (2010) no. 33-36, pp. 2165-2176 | DOI | MR | Zbl

[62] Tardieu, N.; Constantinescu, A. On the determination of elastic coefficients from indentation experiments, Inverse Problems, Volume 16 (2000) no. 3, pp. 577-588 | DOI | MR | Zbl

[63] Tröltzsch, F. Optimal control of partial differential equations, Theory, methods and applications, Graduate Studies in Mathematics, 112, American Mathematical Society, Providence, RI, 2010, xvi+399 pages | DOI | MR | Zbl

[64] Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003) no. 1-2, pp. 227-246 | DOI | MR

Cité par Sources :