Symmetric multistep methods for charged-particle dynamics
The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 205-218.

A class of explicit symmetric multistep methods is proposed for integrating the equations of motion of charged particles in an electro-magnetic field. The magnetic forces are built into these methods in a special way that respects the Lagrangian structure of the problem. It is shown that such methods approximately preserve energy and momentum over very long times, proportional to a high power of the inverse stepsize. We explain this behaviour by studying the modified differential equation of the methods and by analysing the remarkably stable propagation of parasitic solution components.

Publié le :
DOI : 10.5802/smai-jcm.25
Classification : 65L06, 65P10, 78A35, 78M25
Mots clés : linear multistep method, charged particle, magnetic field, energy conservation, backward error analysis, modified differential equation, modulated Fourier expansion
Hairer, Ernst 1 ; Lubich, Christian 2

1 Dept. de Mathématiques, Univ. de Genève, CH-1211 Genève 24, Switzerland
2 Mathematisches Institut, Univ. Tübingen, D-72076 Tübingen, Germany
@article{SMAI-JCM_2017__3__205_0,
     author = {Hairer, Ernst and Lubich, Christian},
     title = {Symmetric multistep methods for charged-particle dynamics},
     journal = {The SMAI Journal of computational mathematics},
     pages = {205--218},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {3},
     year = {2017},
     doi = {10.5802/smai-jcm.25},
     mrnumber = {3716756},
     zbl = {1416.78037},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.25/}
}
TY  - JOUR
AU  - Hairer, Ernst
AU  - Lubich, Christian
TI  - Symmetric multistep methods for charged-particle dynamics
JO  - The SMAI Journal of computational mathematics
PY  - 2017
SP  - 205
EP  - 218
VL  - 3
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.25/
DO  - 10.5802/smai-jcm.25
LA  - en
ID  - SMAI-JCM_2017__3__205_0
ER  - 
%0 Journal Article
%A Hairer, Ernst
%A Lubich, Christian
%T Symmetric multistep methods for charged-particle dynamics
%J The SMAI Journal of computational mathematics
%D 2017
%P 205-218
%V 3
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.25/
%R 10.5802/smai-jcm.25
%G en
%F SMAI-JCM_2017__3__205_0
Hairer, Ernst; Lubich, Christian. Symmetric multistep methods for charged-particle dynamics. The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 205-218. doi : 10.5802/smai-jcm.25. http://www.numdam.org/articles/10.5802/smai-jcm.25/

[1] Boris, J. P. Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Conference on Numerical Simulations of Plasmas (1970), pp. 3-67

[2] Console, P.; Hairer, E.; Lubich, C. Symmetric multistep methods for constrained Hamiltonian systems, Numerische Mathematik, Volume 124 (2013), pp. 517-539 | DOI | MR | Zbl

[3] Dahlquist, G. Stability and error bounds in the numerical integration of ordinary differential equations, Trans. of the Royal Inst. of Techn., Stockholm, Sweden, Volume 130 (1959) | MR | Zbl

[4] Ellison, C. L.; Burby, J. W.; Qin, H. Comment on “Symplectic integration of magnetic systems”: A proof that the Boris algorithm is not variational, J. Comput. Phys., Volume 301 (2015), pp. 489-493 | DOI | MR | Zbl

[5] Hairer, E.; Lubich, C. Symmetric multistep methods over long times, Numer. Math., Volume 97 (2004), pp. 699-723 | DOI | MR | Zbl

[6] Hairer, E.; Lubich, C. Energy behaviour of the Boris method for charged-particle dynamics, Submitted for publication (2017) | Zbl

[7] Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, 2006 | Zbl

[8] Hairer, E.; Nørsett, S. P.; Wanner, G. Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics 8, Springer, Berlin, 1993 | Zbl

[9] He, Y.; Zhou, Z.; Sun, Y.; Liu, J.; Qin, H. Explicit K-symplectic algorithms for charged particle dynamics, Phys. Lett. A, Volume 381 (2017) no. 6, pp. 568-573 | DOI | MR | Zbl

[10] Tao, M. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields, J. Comput. Phys., Volume 327 (2016), pp. 245-251 | DOI | MR | Zbl

[11] Webb, S. D. Symplectic integration of magnetic systems, J. Comput. Phys., Volume 270 (2014), pp. 570-576 | DOI | MR | Zbl

[12] Zhang, R.; Qin, H.; Tang, Y.; Liu, J.; He, Y.; Xiao, J. Explicit symplectic algorithms based on generating functions for charged particle dynamics, Physical Review E, Volume 94 (2016) no. 1, 013205 pages | DOI

Cité par Sources :