Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law
The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 91-116.

This article is the second of a series where we develop and analyze structure-preserving finite element discretizations for the time-dependent 2D Maxwell system with long-time stability properties, and propose a charge-conserving deposition scheme to extend the stability properties in the case where the current source is provided by a particle method. The schemes proposed here derive from a previous study where a generalized commuting diagram was identified as an abstract compatibility criterion in the design of stable schemes for the Maxwell system alone, and applied to build a series of conforming and non-conforming schemes in the 3D case. Here the theory is extended to account for approximate sources, and specific charge-conserving schemes are provided for the 2D case. In this second article we study two schemes which include a strong discretization of the Faraday law. The first one is based on a standard conforming mixed finite element discretization and the long-time stability is ensured by the natural L 2 projection for the current, also standard. The second one is a new non-conforming variant where the numerical fields are sought in fully discontinuous spaces. In this 2D setting it is shown that the associated discrete curl operator coincides with that of a classical DG formulation with centered fluxes, and our analysis shows that a non-standard current approximation operator must be used to yield a charge-conserving scheme with long-time stability properties, while retaining the local nature of L 2 projections in discontinuous spaces. Numerical experiments involving Maxwell and Maxwell-Vlasov problems are then provided to validate the stability of the proposed methods.

Publié le :
DOI : 10.5802/smai-jcm.21
Classification : 35Q61, 65M12, 65M60, 65M75
Mots clés : Maxwell equations, Gauss laws, structure-preserving, PIC, charge-conserving current deposition, conforming finite elements, discontinuous Galerkin, Conga method.
Campos Pinto, Martin 1 ; Sonnendrücker, Eric 2

1 CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France
2 Max-Planck Institute for plasma physics, Boltzmannstr. 2, D-85748 Garching, Germany, Mathematics Center, TU Munich, Boltzmannstr. 3, D-85747 Garching, Germany
@article{SMAI-JCM_2017__3__91_0,
     author = {Campos Pinto, Martin and Sonnendr\"ucker, Eric},
     title = {Compatible {Maxwell} solvers with particles {II:} conforming and non-conforming {2D} schemes with a strong {Faraday} law},
     journal = {The SMAI Journal of computational mathematics},
     pages = {91--116},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {3},
     year = {2017},
     doi = {10.5802/smai-jcm.21},
     mrnumber = {3695789},
     zbl = {1416.78029},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.21/}
}
TY  - JOUR
AU  - Campos Pinto, Martin
AU  - Sonnendrücker, Eric
TI  - Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law
JO  - The SMAI Journal of computational mathematics
PY  - 2017
SP  - 91
EP  - 116
VL  - 3
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.21/
DO  - 10.5802/smai-jcm.21
LA  - en
ID  - SMAI-JCM_2017__3__91_0
ER  - 
%0 Journal Article
%A Campos Pinto, Martin
%A Sonnendrücker, Eric
%T Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law
%J The SMAI Journal of computational mathematics
%D 2017
%P 91-116
%V 3
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.21/
%R 10.5802/smai-jcm.21
%G en
%F SMAI-JCM_2017__3__91_0
Campos Pinto, Martin; Sonnendrücker, Eric. Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law. The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 91-116. doi : 10.5802/smai-jcm.21. http://www.numdam.org/articles/10.5802/smai-jcm.21/

[1] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus, homological techniques, and applications, Acta Numerica (2006) | DOI | MR

[2] Arnold, D.N.; Falk, R.S.; Winther, R. Geometric decompositions and local bases for spaces of finite element differential forms, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009) no. 21, pp. 1660-1672 | DOI | MR

[3] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc.(NS), Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR

[4] Boffi, D.; Brezzi, F.; Fortin, M. Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | MR | Zbl

[5] Boffi, Daniele; Costabel, Martin; Dauge, Monique; Demkowicz, Leszek F Discrete Compactness for the hp Version of Rectangular Edge Finite Elements., SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 3, pp. 979-1004 | DOI | MR | Zbl

[6] Buffa, A.; Perugia, I. Discontinuous Galerkin Approximation of the Maxwell Eigenproblem, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 5, pp. 2198-2226 | DOI | MR | Zbl

[7] Campos Pinto, M. Constructing exact sequences on non-conforming discrete spaces, Comptes Rendus Mathematique, Volume 354 (2016) no. 7, pp. 691-696 | DOI | MR | Zbl

[8] Campos Pinto, M. Structure-preserving conforming and nonconforming discretizations of mixed problems, hal.archives-ouvertes.fr (2017)

[9] Campos Pinto, M.; Jund, S.; Salmon, S.; Sonnendrücker, E. Charge conserving FEM-PIC schemes on general grids, C.R. Mecanique, Volume 342 (2014) no. 10-11, pp. 570-582 | DOI

[10] Campos Pinto, M.; Sonnendrücker, E. Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampère law (2016) (HAL preprint, hal-01303852) | Zbl

[11] Campos Pinto, M.; Sonnendrücker, E. Gauss-compatible Galerkin schemes for time-dependent Maxwell equations, Mathematics of Computation (2016) | DOI | MR | Zbl

[12] Depeyre, S.; Issautier, D. A new constrained formulation of the Maxwell system, Rairo-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, Volume 31 (1997) no. 3, pp. 327-357 | DOI | Numdam | MR | Zbl

[13] Ern, A.; Guermond, J.-L. Finite Element Quasi-Interpolation and Best Approximation (2015) (hal-01155412v2)

[14] Fezoui, L.; Lanteri, S.; Lohrengel, S.; Piperno, S. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 6, pp. 1149-1176 | DOI | Numdam | MR | Zbl

[15] Girault, V.; Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations – Theory and Algorithms, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986

[16] Hesthaven, J.S.; Warburton, T. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 362 (2004) no. 1816, pp. 493-524 | DOI | MR | Zbl

[17] Issautier, D.; Poupaud, F.; Cioni, J.-P.; Fezoui, L. A 2-D Vlasov-Maxwell solver on unstructured meshes, Third international conference on mathematical and numerical aspects of wave propagation (1995), pp. 355-371 | Zbl

[18] Jacobs, G.B.; Hesthaven, J.S. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, Journal of Computational Physics, Volume 214 (2006) no. 1, pp. 96-121 | DOI | MR

[19] Makridakis, C.G.; Monk, P. Time-discrete finite element schemes for Maxwell’s equations, RAIRO Modél Math Anal Numér, Volume 29 (1995) no. 2, pp. 171-197 | DOI | Numdam | MR | Zbl

[20] Monk, P. An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations, Journal of Computational and Applied Mathematics, Volume 47 (1993) no. 1, pp. 101-121 | DOI | Zbl

[21] Nédélec, J.-C. Mixed finite elements in R 3 , Numerische Mathematik, Volume 35 (1980) no. 3, pp. 315-341 | DOI

[22] Nédélec, J.-C. A new family of mixed finite elements in R 3 , Numerische Mathematik, Volume 50 (1986) no. 1, pp. 57-81 | DOI | MR | Zbl

[23] Raviart, P.-A.; Thomas, J.-M. A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292-315 | DOI | Zbl

[24] Stock, A.; Neudorfer, J.; Schneider, R.; Altmann, C.; Munz, C.-D. Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods, COUPLED PROBLEMS 2011 IV International Conference on Computational Methods for Coupled Problems in Science and Engineering (2011)

[25] Zhao, J. Analysis of finite element approximation for time-dependent Maxwell problems, Mathematics of Computation, Volume 73 (2004) no. 247, pp. 1089-1106 | DOI | MR | Zbl

Cité par Sources :