Numerical convergence rate for a diffusive limit of hyperbolic systems: p-system with damping
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 99-119.

This paper deals with diffusive limit of the p-system with damping and its approximation by an Asymptotic Preserving (AP) Finite Volume scheme. Provided the system is endowed with an entropy-entropy flux pair, we give the convergence rate of classical solutions of the p-system with damping towards the smooth solutions of the porous media equation using a relative entropy method. Adopting a semi-discrete scheme, we establish that the convergence rate is preserved by the approximated solutions. Several numerical experiments illustrate the relevance of this result.

Publié le :
DOI : 10.5802/smai-jcm.10
Classification : 65M08, 65M12
Mots clés : Asymptotic Preserving scheme, numerical convergence rate, relative entropy
Berthon, Christophe 1 ; Bessemoulin-Chatard, Marianne 1 ; Mathis, Hélène 1

1 Université de Nantes - Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629 - 2 rue de la Houssinière, BP 92208 - 44322 Nantes, France
@article{SMAI-JCM_2016__2__99_0,
     author = {Berthon, Christophe and Bessemoulin-Chatard, Marianne and Mathis, H\'el\`ene},
     title = {Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping},
     journal = {The SMAI Journal of computational mathematics},
     pages = {99--119},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.10},
     mrnumber = {3633546},
     zbl = {1416.65289},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.10/}
}
TY  - JOUR
AU  - Berthon, Christophe
AU  - Bessemoulin-Chatard, Marianne
AU  - Mathis, Hélène
TI  - Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 99
EP  - 119
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.10/
DO  - 10.5802/smai-jcm.10
LA  - en
ID  - SMAI-JCM_2016__2__99_0
ER  - 
%0 Journal Article
%A Berthon, Christophe
%A Bessemoulin-Chatard, Marianne
%A Mathis, Hélène
%T Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping
%J The SMAI Journal of computational mathematics
%D 2016
%P 99-119
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.10/
%R 10.5802/smai-jcm.10
%G en
%F SMAI-JCM_2016__2__99_0
Berthon, Christophe; Bessemoulin-Chatard, Marianne; Mathis, Hélène. Numerical convergence rate for a diffusive limit of hyperbolic systems: $p$-system with damping. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 99-119. doi : 10.5802/smai-jcm.10. http://www.numdam.org/articles/10.5802/smai-jcm.10/

[1] Berthon, C.; Turpault, R. Asymptotic preserving HLL schemes, Numer. Methods Partial Differential Equations, Volume 27 (2011), pp. 1396-1422 http://onlinelibrary.wiley.com/doi/10.1002/num.20586/pdf | DOI | MR | Zbl

[2] Bianchini, S.; Hanouzet, B.; Natalini, R. Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1559-1622 | DOI | MR | Zbl

[3] Blachère, F.; Turpault, R. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes, Journal of Computational Physics (2016) | DOI | MR | Zbl

[4] Buet, C.; Després, B.; Franck, E. Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes, Numerische Mathematik, Volume 122 (2012) no. 2, pp. 227-278 | DOI | MR | Zbl

[5] Buet, C.; Després, B.; Franck, E.; Leroy, T. Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes, Math. of Comp. (2016) | DOI | Zbl

[6] Cancès, C.; Mathis, H.; Seguin, N. Relative entropy for the finite volume approximation of strong solutions to systems of conservation laws (Submitted)

[7] Christoforou, C.; Tzavaras, A. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity, ArXiv e-prints (2016)

[8] Dafermos, C. M. The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., Volume 70 (1979) no. 2, pp. 167-179 | DOI | MR | Zbl

[9] Dafermos, C. M. Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2010 | MR | Zbl

[10] DiPerna, R. J. Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., Volume 28 (1979) no. 1, pp. 137-188 | DOI | MR

[11] Gosse, L.; Toscani, G. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 4, pp. 337 -342 http://www.sciencedirect.com/science/article/pii/S1631073X02022574 | DOI | MR | Zbl

[12] Gosse, L.; Toscani, G. Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., Volume 41 (2003) no. 2, p. 641-658 (electronic) | DOI | MR | Zbl

[13] Harten, A.; Lax, P. D.; van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983) no. 1, pp. 35-61 | DOI | MR | Zbl

[14] Hsiao, L.; Liu, T.-P. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., Volume 143 (1992) no. 3, pp. 599-605 | DOI | MR | Zbl

[15] Jin, S. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, p. 441-454 (electronic) | DOI | MR | Zbl

[16] Jin, S.; Pareschi, L.; Toscani, G. Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2405-2439 | DOI | MR | Zbl

[17] Jovanović, V.; Rohde, C. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws, SIAM J. Numer. Anal., Volume 43 (2006) no. 6, p. 2423-2449 (electronic) | DOI | MR | Zbl

[18] Kawashima, S. Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, Volume 106 (1987) no. 1-2, pp. 169-194 | DOI | MR | Zbl

[19] Lattanzio, C.; Tzavaras, A. E. Relative Entropy in Diffusive Relaxation, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1563-1584 | DOI | MR | Zbl

[20] Lions, P.L.; Toscani, G. Diffusive limit for finite velocity Boltzmann kinetic models, Revista Matematica Iberoamericana, Volume 13 (1997) no. 3, pp. 473-514 | DOI | MR | Zbl

[21] Marcati, P.; Milani, A.J.; Secchi, P. Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math., Volume 60 (1988) no. 1, pp. 49-69 | DOI | MR

[22] Mei, M. Best Asymptotic Profile for Hyperbolic p-System with Damping, SIAM J. Math. Anal., Volume 42 (2010) no. 1, pp. 1-23 | DOI | MR | Zbl

[23] Naldi, G.; Pareschi, L. Numerical schemes for kinetic equations in diffusive regimes, Appl. Math. Lett., Volume 11 (1998) no. 2, pp. 29-35 http://www.sciencedirect.com/science/article/pii/S0893965998000068 | DOI | MR | Zbl

[24] Naldi, G.; Pareschi, L. Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation, SIAM J. Numer. Anal., Volume 37 (2000) no. 4, pp. 1246-1270 | DOI | MR | Zbl

[25] Nishihara, K. Convergence Rates to Nonlinear Diffusion Waves for Solutions of System of Hyperbolic Conservation Laws with Damping, J. Differential Equations, Volume 131 (1996) no. 2, pp. 171 -188 http://www.sciencedirect.com/science/article/pii/S002203969690159X | DOI | MR | Zbl

[26] Nishihara, K. Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations, Volume 137 (1997) no. 2, pp. 384-395 | DOI | MR | Zbl

[27] Nishihara, K.; Wang, W.; Yang, T. L p -convergence rate to nonlinear diffusion waves for p-system with damping, J. Differential Equations, Volume 161 (2000) no. 1, pp. 191-218 | DOI | MR | Zbl

[28] Tzavaras, A. E. Relative entropy in hyperbolic relaxation, Commun. Math. Sci., Volume 3 (2005) no. 2, pp. 119-132 http://projecteuclid.org/getRecord?id=euclid.cms/1118778271 | DOI | MR | Zbl

[29] van Duyn, C. J.; Peletier, L. A. A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal., Volume 1 (1976/77) no. 3, pp. 223-233 | DOI | MR | Zbl

[30] van Duyn, C. J.; Peletier, L. A. Asymptotic behaviour of solutions of a nonlinear diffusion equation, Arch. Ration. Mech. Anal., Volume 65 (1977) no. 4, pp. 363-377 | DOI | MR | Zbl

Cité par Sources :