AC Optimal Power Flow: a Conic Programming relaxation and an iterative MILP scheme for Global Optimization
Open Journal of Mathematical Optimization, Tome 3 (2022), article no. 6, 19 p.

We address the issue of computing a global minimizer of the AC Optimal Power Flow problem. We introduce valid inequalities to strengthen the Semidefinite Programming relaxation, yielding a novel Conic Programming relaxation. Leveraging these Conic Programming constraints, we dynamically generate Mixed-Integer Linear Programming (MILP) relaxations, whose solutions asymptotically converge to global minimizers of the AC Optimal Power Flow problem. We apply this iterative MILP scheme on the IEEE PES PGLib [2] benchmark and compare the results with two recent Global Optimization approaches.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.17
Mots clés : ACOPF, Global Optimization, Semidefinite Programming, Mixed-Integer Linear Programming
Oustry, Antoine 1, 2

1 LIX CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
2 Ecole des Ponts, Marne-La-Vallée, France
@article{OJMO_2022__3__A6_0,
     author = {Oustry, Antoine},
     title = {AC {Optimal} {Power} {Flow:} a {Conic} {Programming} relaxation and an iterative {MILP} scheme for {Global} {Optimization}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {6},
     pages = {1--19},
     publisher = {Universit\'e de Montpellier},
     volume = {3},
     year = {2022},
     doi = {10.5802/ojmo.17},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ojmo.17/}
}
TY  - JOUR
AU  - Oustry, Antoine
TI  - AC Optimal Power Flow: a Conic Programming relaxation and an iterative MILP scheme for Global Optimization
JO  - Open Journal of Mathematical Optimization
PY  - 2022
SP  - 1
EP  - 19
VL  - 3
PB  - Université de Montpellier
UR  - http://www.numdam.org/articles/10.5802/ojmo.17/
DO  - 10.5802/ojmo.17
LA  - en
ID  - OJMO_2022__3__A6_0
ER  - 
%0 Journal Article
%A Oustry, Antoine
%T AC Optimal Power Flow: a Conic Programming relaxation and an iterative MILP scheme for Global Optimization
%J Open Journal of Mathematical Optimization
%D 2022
%P 1-19
%V 3
%I Université de Montpellier
%U http://www.numdam.org/articles/10.5802/ojmo.17/
%R 10.5802/ojmo.17
%G en
%F OJMO_2022__3__A6_0
Oustry, Antoine. AC Optimal Power Flow: a Conic Programming relaxation and an iterative MILP scheme for Global Optimization. Open Journal of Mathematical Optimization, Tome 3 (2022), article  no. 6, 19 p. doi : 10.5802/ojmo.17. http://www.numdam.org/articles/10.5802/ojmo.17/

[1] Aps, Mosek The MOSEK optimization toolbox for MATLAB manual. Version 9.3, 2022 (http://docs.mosek.com/9.3/toolbox/index.html)

[2] Babaeinejadsarookolaee, Sogol; Birchfield, Adam; Christie, Richard D.; Coffrin, Carleton; DeMarco, Christopher; Diao, Ruisheng; Ferris, Michael; Fliscounakis, Stephane; Greene, Scott; Huang, Renke; Josz, Cédric; Korab, Roman; Lesieutre, Bernard; Maeght, Jean; Mak, Terrence W. K.; Molzahn, Daniel; Overbye, Thomas J.; Panciatici, Patrick; Park, Byungkwon; Snodgrass, Jonathan; Tbaileh, Ahmad; Van Hentenryck, Pascal; Zimmerman, Ray The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms (2021) (https://arxiv.org/abs/1908.02788v2)

[3] Belotti, Pietro; Cafieri, Sonia; Lee, Jon; Liberti, Leo Feasibility-based bounds tightening via fixed points, Combinatorial Optimization, Constraints and Applications (COCOA10) (Du, D.-Z.; Pardalos, P.; Thuraisingham, B., eds.) (Lecture Notes in Computer Science), Volume 6508, Springer (2010), pp. 65-76 | DOI | MR | Zbl

[4] Belotti, Pietro; Lee, Jon; Liberti, Leo; Margot, François; Wächter, Andreas Branching and bounds tightening techniques for non-convex MINLP, Optim. Methods Softw., Volume 24 (2009) no. 4-5, pp. 597-634 | DOI | MR | Zbl

[5] Bienstock, Dan; Escobar, Mauro; Gentile, Claudio; Liberti, Leo Mathematical programming formulations for the alternating current optimal power flow problem, 4OR, Volume 18 (2020) no. 3, pp. 249-292 | DOI | MR | Zbl

[6] Carpentier, Jean Contribution à l’étude du Dispatching Economique, Bulletin de la Société Française des Électriciens, Volume 3 (1962), pp. 431-447

[7] Chen, Chen; Atamturk, Alper; Oren, Shmuel S. A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables, Math. Program., Volume 165 (2017) no. 2, pp. 549-577 | DOI | MR | Zbl

[8] Coffrin, Carleton; Bent, Russell; Sundar, Kaarthik; Ng, Yeesian; Lubin, Miles PowerModels.jl: An Open-Source Framework for Exploring Power Flow Formulations, 2018 Power Systems Computation Conference (PSCC) (2018), pp. 1-8 | DOI

[9] Coffrin, Carleton; Hijazi, Hassan; Hentenryck, Pascal Van Strengthening convex relaxations with bound tightening for power network optimization, International conference on principles and practice of constraint programming, Springer (2015), pp. 39-57 | DOI

[10] Coffrin, Carleton; Hijazi, Hassan; Van Hentenryck, Pascal Strengthening the SDP Relaxation of AC Power Flows With Convex Envelopes, Bound Tightening, and Valid Inequalities, IEEE Trans. Power Syst., Volume 32 (2017) no. 5, pp. 3549-3558 | DOI

[11] Cormen, Thomas; Leiserson, Charles; Rivest, Ronald; Stein, Clifford Introduction to algorithms, MIT Press, 2022

[12] Godard, Hadrien; Elloumi, Sourour; Lambert, Amélie; Maeght, Jean; Ruiz, Manuel Novel Approach Towards Global Optimality of Optimal Power Flow Using Quadratic Convex Optimization, 2019 International Conference on Control, Decision and Information Technologies (2019), pp. 1227-1232 | DOI

[13] Gopinath, Smitha; Hijazi, Hassan Benchmarking Large-Scale ACOPF Solutions and Optimality Bounds (2022) (https://arxiv.org/abs/2203.11328)

[14] Gopinath, Smitha; Hijazi, Hassan; Weisser, Tillmann; Nagarajan, Harsha; Yetkin, Mertcan; Sundar, Kaarthik; Bent, Russell Proving global optimality of ACOPF solutions, Electric Power Systems Research, Volume 189 (2020), 106688

[15] Grone, Robert; Johnson, Eduardo Charlesand Sá; Wolkowicz, Henry Positive definite completions of partial Hermitian matrices, Linear Algebra Appl., Volume 58 (1984), pp. 109-124 | DOI | MR | Zbl

[16] Hart, William; Watson, Jean-Paul; Woodruff, David Pyomo: modeling and solving mathematical programs in Python, Math. Program. Comput., Volume 3 (2011) no. 3, pp. 219-260 | DOI | MR

[17] Hijazi, Hassan; Wang, Guanglei; Coffrin, Carleton Gravity: A Mathematical Modeling Language for Optimization and Machine Learning, 2018 (Machine Learning Open Source Software Workshop at NeurIPS 2018, available at www.gravityopt.com)

[18] IBM ILOG CPLEX V12.9: User’s Manual for CPLEX, 2018 (International Business Machines Corporation)

[19] Kocuk, Burak; Dey, Santanu; Sun, Andy Inexactness of SDP relaxation and valid inequalities for optimal power flow, IEEE Trans. Power Syst., Volume 31 (2015) no. 1, pp. 642-651 | DOI

[20] Kocuk, Burak; Dey, Santanu; Sun, Andy Strong SOCP relaxations for the optimal power flow problem, Oper. Res., Volume 64 (2016) no. 6, pp. 1177-1196 | DOI | MR | Zbl

[21] Kocuk, Burak; Dey, Santanu; Sun, Andy Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem, Math. Program. Comput., Volume 10 (2018) no. 4, pp. 557-596 | DOI | MR | Zbl

[22] Komiya, Hidetoshi Elementary proof for Sion’s minimax theorem, Kodai Math. J., Volume 11 (1988) no. 1, pp. 5-7 | DOI | MR | Zbl

[23] Lasserre, Jean-Bernard Global optimization with polynomials and the problem of moments, SIAM J. Optim., Volume 11 (2001) no. 3, pp. 796-817 | DOI | MR | Zbl

[24] Lasserre, Jean-Bernard Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM J. Optim., Volume 17 (2006) no. 3, pp. 822-843 | DOI | MR | Zbl

[25] Lu, Mowen; Nagarajan, Harsha; Bent, Russell; Eksioglu, Sandra; Mason, Scott Tight Piecewise Convex Relaxations for Global Optimization of Optimal Power Flow, 2018 Power Systems Computation Conference, IEEE (2018), pp. 1-7 (Accessed 2021-06-22) | DOI

[26] McCormick, Garth P. Computability of global solutions to factorable nonconvex programs: Part I–Convex underestimating problems, Math. Program., Volume 10 (1976) no. 1, pp. 147-175 | DOI | Zbl

[27] Molzahn, Daniel; Hiskens, Ian Sparsity-exploiting moment-based relaxations of the optimal power flow problem, IEEE Trans. Power Syst., Volume 30 (2014) no. 6, pp. 3168-3180 | DOI

[28] Molzahn, Daniel; Hiskens, Ian A Survey of Relaxations and Approximations of the Power Flow Equations, Foundations and Trends in Electric Energy Systems, Volume 4 (2019) no. 1, pp. 1-221 | DOI

[29] Molzahn, Daniel; Josz, Cédric; Hiskens, Ian Moment relaxations of optimal power flow problems: beyond the convex hull, 2016 Global Conference on Signal and Information Processing, IEEE (2016), pp. 856-860 | DOI

[30] Oustry, Antoine; D’Ambrosio, Claudia; Liberti, Leo; Ruiz, Manuel Certified and accurate SDP bounds for the ACOPF problem, 2022 Power Systems Computation Conference, IEEE (2022) (https://hal.archives-ouvertes.fr/hal-03613385)

[31] Sherali, Hanif; Alameddine, Amine A new reformulation-linearization technique for bilinear programming problems, J. Glob. Optim., Volume 2 (1992) no. 4, pp. 379-410 | DOI | MR | Zbl

[32] Sundar, Kaarthik; Nagarajan, Harsha; Misra, Sidhant; Lu, Mowen; Coffrin, Carleton; Bent, Russell Optimization-Based Bound Tightening using a Strengthened QC-Relaxation of the Optimal Power Flow Problem (2019) (http://arxiv.org/abs/1809.04565v3)

[33] Wächter, Andreas; Biegler, Lorenz On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., Volume 106 (2006) no. 1, pp. 25-57 | DOI | MR | Zbl

Cité par Sources :