Frameworks and Results in Distributionally Robust Optimization
Open Journal of Mathematical Optimization, Tome 3 (2022), article no. 4, 85 p.

The concepts of risk aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. The statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and relationships with robust optimization, risk aversion, chance-constrained optimization, and function regularization. Various approaches to model the distributional ambiguity and their calibrations are discussed. The paper also describes the main solution techniques used to the solve the resulting optimization problems.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.15
Classification : 90C15, 90C22, 90C25, 90C30, 90C34, 90C90, 68T37, 68T05
Mots clés : Distributionally robust optimization, Robust optimization, Stochastic optimization, Risk-averse optimization, Chance-constrained optimization, Statistical learning
Rahimian, Hamed 1 ; Mehrotra, Sanjay 2

1 Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA
2 Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA
@article{OJMO_2022__3__A4_0,
     author = {Rahimian, Hamed and Mehrotra, Sanjay},
     title = {Frameworks and {Results} in {Distributionally} {Robust} {Optimization}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {4},
     pages = {1--85},
     publisher = {Universit\'e de Montpellier},
     volume = {3},
     year = {2022},
     doi = {10.5802/ojmo.15},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ojmo.15/}
}
TY  - JOUR
AU  - Rahimian, Hamed
AU  - Mehrotra, Sanjay
TI  - Frameworks and Results in Distributionally Robust Optimization
JO  - Open Journal of Mathematical Optimization
PY  - 2022
SP  - 1
EP  - 85
VL  - 3
PB  - Université de Montpellier
UR  - http://www.numdam.org/articles/10.5802/ojmo.15/
DO  - 10.5802/ojmo.15
LA  - en
ID  - OJMO_2022__3__A4_0
ER  - 
%0 Journal Article
%A Rahimian, Hamed
%A Mehrotra, Sanjay
%T Frameworks and Results in Distributionally Robust Optimization
%J Open Journal of Mathematical Optimization
%D 2022
%P 1-85
%V 3
%I Université de Montpellier
%U http://www.numdam.org/articles/10.5802/ojmo.15/
%R 10.5802/ojmo.15
%G en
%F OJMO_2022__3__A4_0
Rahimian, Hamed; Mehrotra, Sanjay. Frameworks and Results in Distributionally Robust Optimization. Open Journal of Mathematical Optimization, Tome 3 (2022), article  no. 4, 85 p. doi : 10.5802/ojmo.15. http://www.numdam.org/articles/10.5802/ojmo.15/

[1] Ahipaşaoğlu, Selin Damla; Arıkan, Uğur; Natarajan, Karthik Distributionally robust Markovian traffic equilibrium, Transport. Sci., Volume 53 (2019) no. 6, pp. 1546-1562 | DOI

[2] Acerbi, Carlo Spectral measures of risk: A coherent representation of subjective risk aversion, J. Bank. Financ., Volume 26 (2002) no. 7, pp. 1505-1518 | DOI

[3] Armbruster, Benjamin; Delage, Erick Decision making under uncertainty when preference information is incomplete, Manage. Sci., Volume 61 (2015) no. 1, pp. 111-128 | DOI

[4] Artzner, Philippe; Delbaen, Freddy; Eber, Jean-Marc; Heath, David Coherent Measures of Risk, Math. Financ., Volume 9 (1999) no. 3, pp. 203-228 | DOI | MR | Zbl

[5] Ahmadi-Javid, Amir An information-theoretic approach to constructing coherent risk measures, 2011 IEEE International Symposium on Information Theory Proceedings, IEEE (2011), pp. 2125-2127 | DOI

[6] Ahmadi-Javid, Amir Entropic value-at-risk: A new coherent risk measure, J. Optim. Theory Appl., Volume 155 (2012) no. 3, pp. 1105-1123 | DOI | MR | Zbl

[7] Arpón, Sebastián; Homem-de-Mello, Tito; Pagnoncelli, Bernardo Scenario reduction for stochastic programs with Conditional Value-at-Risk, Math. Program., Volume 170 (2018) no. 1, pp. 327-356 | DOI | MR | Zbl

[8] Ardestani-Jaafari, Amir; Delage, Erick Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems, Oper. Res., Volume 64 (2016) no. 2, pp. 474-494 | DOI | MR | Zbl

[9] Armbruster, Benjamin; Luedtke, James R. Models and formulations for multivariate dominance-constrained stochastic programs, IIE Trans., Volume 47 (2015) no. 1, pp. 1-14 | DOI

[10] Analui, Bita; Pflug, Georg Ch. On distributionally robust multiperiod stochastic optimization, Comput. Manag. Sci., Volume 11 (2014) no. 3, pp. 197-220 | DOI | MR | Zbl

[11] Bertsimas, Dimitris; Brown, David B. Constructing uncertainty sets for robust linear optimization, Oper. Res., Volume 57 (2009) no. 6, pp. 1483-1495 | DOI | MR | Zbl

[12] Bertsimas, Dimitris; Brown, David B.; Caramanis, Constantine Theory and applications of robust optimization, SIAM Rev., Volume 53 (2011) no. 3, pp. 464-501 | DOI | MR | Zbl

[13] Bertsimas, Dimitris; Caramanis, Constantine Finite adaptability in multistage linear optimization, IEEE Trans. Autom. Control, Volume 55 (2010) no. 12, pp. 2751-2766 | DOI | MR | Zbl

[14] Bose, Subir; Daripa, Arup A dynamic mechanism and surplus extraction under ambiguity, J. Econ. Theory, Volume 144 (2009) no. 5, pp. 2084-2114 | DOI | MR | Zbl

[15] Bertsimas, Dimitris; Dunning, Iain R. Relative robust and adaptive optimization, INFORMS J. Comput., Volume 32 (2020) no. 2, pp. 408-427 | MR | Zbl

[16] Bertsimas, Dimitris; Doan, Xuan Vinh; Natarajan, Karthik; Teo, Chung-Piaw Models for minimax stochastic linear optimization problems with risk aversion, Math. Oper. Res., Volume 35 (2010) no. 3, pp. 580-602 | DOI | MR | Zbl

[17] Breton, Michèle; El Hachem, Saeb Algorithms for the solution of stochastic dynamic minimax problems, Comput. Optim. Appl., Volume 4 (1995) no. 4, pp. 317-345 | DOI | MR | Zbl

[18] Bertsekas, Dimitri P. Nonlinear Programming, Athena Scientific, 2016

[19] Bertsekas, Dimitri P. Dynamic programming and optimal control, Athena Scientific, 2017

[20] Blackwell, David A.; Girshick, Meyer A. Theory of games and statistical decisions, Dover Publications, 1979

[21] Bertsimas, Dimitris; Gupta, Vishal; Kallus, Nathan Data-driven robust optimization, Math. Program., Volume 167 (2018) no. 2, pp. 235-292 | DOI | MR | Zbl

[22] Bertsimas, Dimitris; Gupta, Vishal; Kallus, Nathan Robust sample average approximation, Math. Program., Volume 171 (2018) no. 1, pp. 217-282 | DOI | MR | Zbl

[23] Ban, Gah-Yi; Gallien, Jérémie; Mersereau, Adam J. Dynamic procurement of new products with covariate information: The residual tree method, Manuf. Serv. Oper. Management, Volume 21 (2019) no. 4, pp. 798-815

[24] Bansal, Manish; Huang, Kuo-Ling; Mehrotra, Sanjay Decomposition algorithms for two-stage distributionally robust mixed binary programs, SIAM J. Optim., Volume 28 (2018) no. 3, pp. 2360-2383 | DOI | MR | Zbl

[25] Blanchet, Jose; Kang, Yang Distributionally robust groupwise regularization estimator, Asian Conference on Machine Learning, Proceedings of Machine Learning Research (2017), pp. 97-112

[26] Bertsimas, Dimitris; Kallus, Nathan From predictive to prescriptive analytics, Manage. Sci., Volume 66 (2020) no. 3, pp. 1025-1044 | DOI

[27] Blanchet, Jose; Kang, Yang Semi-supervised Learning Based on Distributionally Robust Optimization, Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods (Makrides, Andreas; Karagrigoriou, Alex; Skiadas, Christos H, eds.), Volume 5, John Wiley & Sons, 2020, pp. 1-33

[28] Blanchet, Jose; Kang, Yang Sample out-of-sample inference based on Wasserstein distance, Oper. Res., Volume 69 (2021) no. 3, pp. 985-1013 | DOI | MR | Zbl

[29] Blanchet, Jose; Kang, Yang; Murthy, Karthyek Robust Wasserstein profile inference and applications to machine learning, J. Appl. Probab., Volume 56 (2019) no. 3, pp. 830-857 | DOI | MR | Zbl

[30] Blanchet, Jose; Kang, Yang; Murthy, Karthyek; Zhang, Fan Data-driven optimal transport cost selection for distributionally robust optimization, Proceedings of the 2019 Winter Simulation Conference (WSC ’19) (2019), pp. 3740-3751 | DOI

[31] Blanchet, Jose; Kang, Yang; Zhang, Fan; He, Fei; Hu, Zhangyi Doubly Robust Data-driven Distributionally Robust Optimization, Applied Modeling Techniques and Data Analysis 1 (Dimotikalis, Yannis; Karagrigoriou, Alex; Parpoula, Christina; Skiadas, Christos H, eds.), John Wiley & Sons, pp. 75-90 | DOI

[32] Birge, J. R.; Louveaux, F. Introduction to Stochastic Programming, Springer, 2011 | DOI

[33] Bayraksan, Güzin; Love, David K. Data-Driven Stochastic Programming Using Phi-Divergences, The Operations Research Revolution, INFORMS TutORials in Operations Research, 2015, pp. 1-19 | Zbl

[34] Bartlett, Peter L.; Mendelson, Shahar Rademacher and Gaussian complexities: Risk bounds and structural results, J. Mach. Learn. Res., Volume 3 (2002) no. Nov, pp. 463-482 | MR

[35] Bayraksan, Güzin; Morton, David P. Assessing solution quality in stochastic programs, Math. Program., Volume 108 (2006) no. 2-3, pp. 495-514 | DOI | MR | Zbl

[36] Bayraksan, Güzin; Morton, David P. Assessing solution quality in stochastic programs via sampling, Decision Technologies and Applications, INFORMS TutORials in Operations Research, 2009, pp. 102-122

[37] Blanchet, Jose; Murthy, Karthyek Quantifying distributional model risk via optimal transport, Math. Oper. Res., Volume 44 (2019) no. 2, pp. 565-600 | DOI | MR | Zbl

[38] Bansal, Manish; Mehrotra, Sanjay On Solving Two-Stage Distributionally Robust Disjunctive Programs with a General Ambiguity Set, Eur. J. Oper. Res., Volume 279 (2019) no. 2, pp. 296-307 | DOI | MR | Zbl

[39] Blanchet, Jose; Murthy, Karthyek; Nguyen, Viet Anh Statistical Analysis of Wasserstein Distributionally Robust Estimators, Emerging Optimization Methods and Modeling Techniques with Applications, INFORMS TutORials in Operations Research, 2021, pp. 227-254

[40] Bertsimas, Dimitris; McCord, Christopher; Sturt, Bradley Dynamic optimization with side information, Eur. J. Oper. Res. (2022) (https://doi.org/10.1016/j.ejor.2022.03.030) | DOI

[41] Blanchet, Jose; Murthy, Karthyek; Zhang, Fan Optimal Transport-Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes, Math. Oper. Res. (2021) | Zbl

[42] Bertsimas, Dimitris; Natarajan, Karthik; Teo, Chung-Piaw Probabilistic combinatorial optimization: Moments, semidefinite programming, and asymptotic bounds, SIAM J. Optim., Volume 15 (2004) no. 1, pp. 185-209 | DOI | MR | Zbl

[43] Bertsimas, Dimitris; Natarajan, Karthik; Teo, Chung-Piaw Persistence in discrete optimization under data uncertainty, Math. Program., Volume 108 (2006) no. 2-3, pp. 251-274 | DOI | MR | Zbl

[44] Bertsimas, Dimitris; Popescu, Ioana Optimal inequalities in probability theory: A convex optimization approach, SIAM J. Optim., Volume 15 (2005) no. 3, pp. 780-804 | DOI | MR | Zbl

[45] Bertsimas, Dimitris; Pachamanova, Dessislava; Sim, Melvyn Robust linear optimization under general norms, Oper. Res. Lett., Volume 32 (2004) no. 6, pp. 510-516 | DOI | MR | Zbl

[46] Ban, Gah-Yi; Rudin, Cynthia The Big Data Newsvendor: Practical Insights from Machine Learning, Oper. Res., Volume 67 (2019) no. 1, pp. 90-108 | MR | Zbl

[47] Bertsimas, Dimitris; Sim, Melvyn The price of robustness, Oper. Res., Volume 52 (2004) no. 1, pp. 35-53 | DOI | MR | Zbl

[48] Bonnans, Frédéric; Shapiro, Alexander Perturbation analysis of optimization problems, Springer, 2013

[49] Bazaraa, Mokhtar S.; Sherali, Hanif D.; Shetty, Chitharanjan M. Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, 2006 | DOI

[50] Bertsimas, Dimitris; Shtern, Shimrit; Sturt, Bradley A data-driven approach to multistage stochastic linear optimization, Manage. Sci. (2022) (https://doi.org/10.1287/mnsc.2022.4352) | DOI | Zbl

[51] Bertsimas, Dimitris; Shtern, Shimrit; Sturt, Bradley Two-stage sample robust optimization, Oper. Res., Volume 70 (2022) no. 1, pp. 624-640 | DOI | MR | Zbl

[52] Bertsimas, Dimitris; Sim, Melvyn; Zhang, Meilin A practicable framework for distributionally robust linear optimization, 2014 (Optimization Online www.optimization-online.org/DB_FILE/2013/07/3954.html)

[53] Bertsimas, Dimitris; Sim, Melvyn; Zhang, Meilin Adaptive distributionally robust optimization, Manage. Sci., Volume 65 (2019) no. 2, pp. 604-618 | DOI

[54] Ben-Tal, Aharon; Bertsimas, Dimitris; Brown, David B. A soft robust model for optimization under ambiguity, Oper. Res., Volume 58 (2010) no. 4, Part 2, pp. 1220-1234 | DOI | MR | Zbl

[55] Ben-Tal, Aharon; Brekelmans, Ruud; Den Hertog, Dick; Vial, Jean-Philippe Globalized robust optimization for nonlinear uncertain inequalities, INFORMS J. Comput., Volume 29 (2017) no. 2, pp. 350-366 | DOI | MR | Zbl

[56] Ben-Tal, Aharon; Boyd, Stephen; Nemirovski, Arkadi Extending scope of robust optimization: Comprehensive robust counterparts of uncertain problems, Math. Program., Volume 107 (2006) no. 1-2, pp. 63-89 | DOI | MR | Zbl

[57] Ben-Tal, Aharon; den Hertog, Dick; De Waegenaere, Anja; Melenberg, Bertrand; Rennen, Gijs Robust solutions of optimization problems affected by uncertain probabilities, Manage. Sci., Volume 59 (2013) no. 2, pp. 341-357 | DOI

[58] Ben-Tal, Aharon; Den Hertog, Dick; Vial, Jean-Philippe Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program., Volume 149 (2015) no. 1-2, pp. 265-299 | DOI | MR | Zbl

[59] Ben-Tal, Aharon; El Ghaoui, Laurent; Nemirovski, Arkadi Robust Optimization, Princeton University Press, 2009 | DOI

[60] Ben-Tal, Aharon; Goryashko, Alexander; Guslitzer, Elana; Nemirovski, Arkadi Adjustable robust solutions of uncertain linear programs, Math. Program., Volume 99 (2004) no. 2, pp. 351-376 | DOI | MR | Zbl

[61] Ben-Tal, Aharon; Hochman, Eithan More bounds on the expectation of a convex function of a random variable, J. Appl. Probab., Volume 9 (1972) no. 4, pp. 803-812 | MR | Zbl

[62] Ben-Tal, Aharon; Nemirovski, Arkadi Robust solutions of linear programming problems contaminated with uncertain data, Math. Program., Volume 88 (2000) no. 3, pp. 411-424 | DOI | MR | Zbl

[63] Ben-Tal, Aharon; Nemirovski, Arkadi On safe tractable approximations of chance-constrained linear matrix inequalities, Math. Oper. Res., Volume 34 (2009) no. 1, pp. 1-25 | DOI | MR | Zbl

[64] Ben-Tal, Aharon; Nemirovski, Arkadi Lectures on modern convex optimization: Analysis, Algorithms, Engineering Applications, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2019

[65] Ben-Tal, Aharon; Nemirovski, Arkadi Robust convex optimization, Math. Oper. Res., Volume 23 (1998) no. 4, pp. 769-805 | DOI | MR

[66] Ben-Tal, Aharon; Teboulle, Marc An Old-New Concept of Convex Risk Measures: The Optimized Certainty Equivalent, Math. Financ., Volume 17 (2007) no. 3, pp. 449-476 | DOI | MR | Zbl

[67] Ben-Tal, Aharon; Teboulle, Marc Expected utility, penalty functions, and duality in stochastic nonlinear programming, Manage. Sci., Volume 32 (1986) no. 11, pp. 1445-1466 | DOI | MR | Zbl

[68] Bolley, François; Villani, Cédric Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities (6), Volume 14 (2005) no. 3, pp. 331-352 | Numdam | Zbl

[69] Bertsimas, Dimitris; Van Parys, Bart P. G. Bootstrap robust prescriptive analytics, Math. Program. (2021) (https://doi.org/10.1007/s10107-021-01679-2) | DOI

[70] Bennouna, M.; Van Parys, Bart P. G. Learning and Decision-Making with Data: Optimal Formulations and Phase Transitions (2021) (https://arxiv.org/abs/2109.06911)

[71] Bansal, Manish; Zhang, Yingqiu Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs, J. Glob. Optim., Volume 81 (2021) no. 2, pp. 391-433 | DOI | MR | Zbl

[72] Calafiore, Giuseppe C. Ambiguous risk measures and optimal robust portfolios, SIAM J. Optim., Volume 18 (2007) no. 3, pp. 853-877 | DOI | MR | Zbl

[73] Carlsson, John Gunnar; Behroozi, Mehdi; Mihic, Kresimir Wasserstein distance and the distributionally robust TSP, Oper. Res., Volume 66 (2018) no. 6, pp. 1603-1624 | DOI | MR | Zbl

[74] Campi, Marco C.; Calafiore, Giuseppe C. Decision making in an uncertain environment: the scenario-based optimization approach, Multiple Participant Decision Making, Advanced Knowledge International, 2004, pp. 99-111

[75] Calafiore, Giuseppe C.; Campi, Marco C. Uncertain convex programs: randomized solutions and confidence levels, Math. Program., Volume 102 (2005) no. 1, pp. 25-46 | DOI | MR | Zbl

[76] Charnes, Abraham; Cooper, William W. Chance-constrained programming, Manage. Sci., Volume 6 (1959) no. 1, pp. 73-79 | DOI | MR | Zbl

[77] Charnes, Abraham; Cooper, William W. Deterministic equivalents for optimizing and satisficing under chance constraints, Oper. Res., Volume 11 (1963) no. 1, pp. 18-39 | DOI | MR | Zbl

[78] Charnes, Abraham; Cooper, William W.; Kortanek, Kenneth O. Duality, Haar programs, and finite sequence spaces, Proc. Natl. Acad. Sci. USA, Volume 48 (1962) no. 5, pp. 783-786 | DOI | MR | Zbl

[79] Charnes, Abraham; Cooper, William W.; Kortanek, Kenneth O. Duality in semi-infinite programs and some works of Haar and Carathéodory, Manage. Sci., Volume 9 (1963) no. 2, pp. 209-228 | DOI | Zbl

[80] Charnes, Abraham; Cooper, William W.; Kortanek, Kenneth O. On the theory of semi-infinite programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions, Nav. Res. Logist. Q., Volume 16 (1969) no. 1, pp. 41-52 | DOI | MR | Zbl

[81] Charnes, Abraham; Cooper, William W.; Symonds, Gifford H. Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil, Manage. Sci., Volume 4 (1958) no. 3, pp. 235-263 | DOI

[82] Calafiore, Giuseppe C.; El Ghaoui, Laurent On distributionally robust chance-constrained linear programs, J. Optim. Theory Appl., Volume 130 (2006) no. 1, pp. 1-22 | DOI | MR | Zbl

[83] Campi, Marco C.; Garatti, Simone The exact feasibility of randomized solutions of uncertain convex programs, SIAM J. Optim., Volume 19 (2008) no. 3, pp. 1211-1230 | DOI | MR | Zbl

[84] Chen, Zhi; Kuhn, Daniel; Wiesemann, Wolfram Data-Driven Chance Constrained Programs over Wasserstein Balls (2018) (https://arxiv.org/abs/1809.00210)

[85] Cheng, Jianqiang; Li-Yang Chen, Richard; Najm, Habib N.; Pinar, Ali; Safta, Cosmin; Watson, Jean-Paul Distributionally Robust Optimization with Principal Component Analysis, SIAM J. Optim., Volume 28 (2018) no. 2, pp. 1817-1841 | DOI | MR | Zbl

[86] Chen, Louis; Ma, Will; Natarajan, Karthik; Simchi-Levi, David; Yan, Zhenzhen Distributionally robust linear and discrete optimization with marginals, Oper. Res. (2022) (https://doi.org/10.1287/opre.2021.2243) | MR

[87] Chambolle, Antonin; Pock, Thomas A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., Volume 40 (2011) no. 1, pp. 120-145 | DOI | MR | Zbl

[88] Chen, Ruidi; Paschalidis, Ioannis Ch. A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization, J. Mach. Learn. Res., Volume 19 (2018) no. 13, pp. 1-48 | MR | Zbl

[89] Christmann, Andreas; Steinwart, Ingo et al. Consistency and robustness of kernel-based regression in convex risk minimization, Bernoulli, Volume 13 (2007) no. 3, pp. 799-819 | MR | Zbl

[90] Christmann, Andreas; Steinwart, Ingo On robustness properties of convex risk minimization methods for pattern recognition, J. Mach. Learn. Res., Volume 5 (2004) no. Aug, pp. 1007-1034 | MR | Zbl

[91] Chen, Wenqing; Sim, Melvyn Goal-driven optimization, Oper. Res., Volume 57 (2009) no. 2, pp. 342-357 | DOI | MR | Zbl

[92] Chen, Xin; Sim, Melvyn; Sun, Peng A robust optimization perspective on stochastic programming, Oper. Res., Volume 55 (2007) no. 6, pp. 1058-1071 | DOI | MR | Zbl

[93] Chen, Wenqing; Sim, Melvyn; Sun, Jie; Teo, Chung-Piaw From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Oper. Res., Volume 58 (2010) no. 2, pp. 470-485 | DOI | MR | Zbl

[94] Chen, Xin; Sim, Melvyn; Sun, Peng; Zhang, Jiawei A linear decision-based approximation approach to stochastic programming, Oper. Res., Volume 56 (2008) no. 2, pp. 344-357 | DOI | MR | Zbl

[95] Chen, Xiaojun; Sun, Hailin; Xu, Huifu Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems, Math. Program., Volume 177 (2019) no. 1, pp. 255-289 | DOI | MR | Zbl

[96] Chen, Zhi; Sim, Melvyn; Xu, Huan Distributionally robust optimization with infinitely constrained ambiguity sets, Oper. Res., Volume 67 (2019) no. 5, pp. 1328-1344 | DOI | MR | Zbl

[97] Chen, Zhi; Sim, Melvyn; Xiong, Peng Robust stochastic optimization made easy with RSOME, Manage. Sci., Volume 66 (2020) no. 8, pp. 3329-3339 | DOI

[98] Chen, Yannan; Sun, Hailin; Xu, Huifu Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems, Comput. Optim. Appl., Volume 78 (2021) no. 1, pp. 205-238 | DOI | MR | Zbl

[99] Chen, Zhi; Xiong, Peng RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy, 2021 (Optimization Online http://www.optimization-online.org/DB_HTML/2021/06/8443.html)

[100] Chen, Zhi; Xie, Weijun Regret in the newsvendor model with demand and yield randomness, Prod. Oper. Manage., Volume 30 (2021) no. 11, pp. 4176-4197 | DOI

[101] Chen, Xin; Zhang, Yuhan Uncertain linear programs: Extended affinely adjustable robust counterparts, Oper. Res., Volume 57 (2009) no. 6, pp. 1469-1482 | DOI | MR | Zbl

[102] Dhara, Anulekha; Das, Bikramjit; Natarajan, Karthik Worst-case expected shortfall with univariate and bivariate marginals, INFORMS J. Comput., Volume 33 (2021) no. 1, pp. 370-389 | DOI | MR | Zbl

[103] Delage, Erick Distributionally robust optimization in context of data-driven problems, Ph.D. dissertation, Stanford University (2009)

[104] Dentcheva, Darinka Optimization Models with Probabilistic Constraints, Probabilistic and Randomized Methods for Design under Uncertainty (Calafiore, Giuseppe C.; Dabbene, Fabrizio, eds.), Springer, 2006, pp. 49-97 | DOI | Zbl

[105] Devroye, Luc; Gyorfi, Laszlo Nonparametric density estimation: The L1 View, John Wiley & Sons, 1985

[106] Dupačová, Jitka; Gröwe-Kuska, Nicole; Römisch, Werner Scenario reduction in stochastic programming, Math. Program., Volume 95 (2003) no. 3, pp. 493-511 | DOI | Zbl

[107] Duchi, John C.; Glynn, Peter W.; Namkoong, Hongseok Statistics of robust optimization: A generalized empirical likelihood approach, Math. Oper. Res., Volume 46 (2021) no. 3, pp. 946-969 | DOI | MR | Zbl

[108] Delage, Erick; Guo, Shaoyan; Xu, Huifu Shortfall Risk Models When Information on Loss Function Is Incomplete, Oper. Res. (2022)

[109] Dunning, Iain R.; Huchette, Joey; Lubin, Miles JuMP: A Modeling Language for Mathematical Optimization, SIAM Rev., Volume 59 (2017) no. 2, pp. 295-320 | DOI | MR | Zbl

[110] Duchi, John C.; Hashimoto, Tatsunori; Namkoong, Hongseok Distributionally Robust Losses Against Mixture Covariate Shifts (2019) (https://arxiv.org/abs/2007.13982)

[111] Ding, Ke-wei; Huang, Nan-jing; Wang, Lei Globalized distributionally robust optimization problems under the moment-based framework (2020) (https://arxiv.org/abs/2008.08256)

[112] Dharmadhikari, Sudhakar; Joag-Dev, Kumar Unimodality, convexity, and applications, Academic Press Inc., 1988

[113] Dupuis, Paul; Katsoulakis, Markos A.; Pantazis, Yannis; Plechác, Petr Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics, SIAM/ASA J. Uncertain. Quantif., Volume 4 (2016) no. 1, pp. 80-111 | DOI | MR | Zbl

[114] Delage, Erick; Kuhn, Daniel; Wiesemann, Wolfram "Dice“sion-Making Under Uncertainty: When Can a Random Decision Reduce Risk?, Manage. Sci., Volume 65 (2019) no. 7, pp. 3282-3301 | DOI

[115] Delage, Erick; Li, Jonathan Y. Minimizing risk exposure when the choice of a risk measure is ambiguous, Manage. Sci., Volume 64 (2018) no. 1, pp. 327-344 | DOI

[116] Doan, Xuan Vinh; Li, Xiaobo; Natarajan, Karthik Robustness to dependency in portfolio optimization using overlapping marginals, Oper. Res., Volume 63 (2015) no. 6, pp. 1468-1488 | DOI | MR | Zbl

[117] Duque, Daniel; Morton, David P. Distributionally robust stochastic dual dynamic programming, SIAM J. Optim., Volume 30 (2020) no. 4, pp. 2841-2865 | DOI | MR | Zbl

[118] Derman, Esther; Mannor, Shie Distributional robustness and regularization in reinforcement learning (2020) (https://arxiv.org/abs/2003.02894)

[119] DeMiguel, Victor; Nogales, Francisco J. Portfolio selection with robust estimation, Oper. Res., Volume 57 (2009) no. 3, pp. 560-577 | DOI | MR | Zbl

[120] Dentcheva, Darinka; Ruszczynski, Andrzej Optimization with stochastic dominance constraints, SIAM J. Optim., Volume 14 (2003) no. 2, pp. 548-566 | DOI | MR | Zbl

[121] Dentcheva, Darinka; Ruszczyński, Andrzej Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Math. Program., Volume 99 (2004) no. 2, pp. 329-350 | DOI | MR | Zbl

[122] Dentcheva, Darinka; Ruszczyński, Andrzej Optimization with multivariate stochastic dominance constraints, Math. Program., Volume 117 (2009) no. 1-2, pp. 111-127 | DOI | MR | Zbl

[123] Dentcheva, Darinka; Ruszczyński, Andrzej Robust stochastic dominance and its application to risk-averse optimization, Math. Program., Volume 123 (2010) no. 1, pp. 85-100 | DOI | MR | Zbl

[124] Deng, Yunxiao; Sen, Suvrajeet Learning Enabled Optimization: Towards a Fusion of Statistical Learning and Stochastic Optimization, 2018 (Optimization Online http://www.optimization-online.org/DB_HTML/2017/03/5904.html)

[125] Delage, Erick; Saif, Ahmed The value of randomized solutions in mixed-integer distributionally robust optimization problems, INFORMS J. Comput., Volume 34 (2022) no. 1, pp. 333-353 | DOI | MR | Zbl

[126] Dudley, Richard Mansfield The speed of mean Glivenko-Cantelli convergence, Ann. Math. Stat., Volume 40 (1969) no. 1, pp. 40-50 | DOI | MR | Zbl

[127] Dunning, Iain R. Advances in robust and adaptive optimization: algorithms, software, and insights, Ph. D. Thesis, Massachusetts Institute of Technology (2016)

[128] Dupačová, Jitka The minimax approach to stochastic programming and an illustrative application, Stochastics, Volume 20 (1987) no. 1, pp. 73-88 | DOI | MR | Zbl

[129] Dupačová, Jitka Stability and sensitivity-analysis for stochastic programming, Ann. Oper. Res., Volume 27 (1990) no. 1, pp. 115-142 | DOI | MR | Zbl

[130] Delage, Erick; Ye, Yinyu Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper. Res., Volume 58 (2010) no. 3, pp. 595-612 | DOI | MR | Zbl

[131] Dembo, Amir; Zeitouni, Ofer Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer, 1998 | DOI

[132] El Ghaoui, Laurent; Lebret, Hervé Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 4, pp. 1035-1064 | DOI | MR | Zbl

[133] El Ghaoui, Laurent; Oustry, Francois; Lebret, Hervé Robust solutions to uncertain semidefinite programs, SIAM J. Optim., Volume 9 (1998) no. 1, pp. 33-52 | DOI | MR | Zbl

[134] El Ghaoui, Laurent; Oks, Maksim; Oustry, Francois Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res., Volume 51 (2003) no. 4, pp. 543-556 | MR | Zbl

[135] Erdoğan, Emre; Iyengar, Garud Ambiguous chance constrained problems and robust optimization, Math. Program., Volume 107 (2006) no. 1-2, pp. 37-61 | DOI | MR | Zbl

[136] Eban, Elad; Mezuman, Elad; Globerson, Amir Discrete Chebyshev classifiers, 31st International Conference on Machine Learning, Proceedings of Machine Learning Research (2014), pp. 1233-1241

[137] Embrechts, Paul; Puccetti, Giovanni Aggregating risk capital, with an application to operational risk, Geneva Risk Insur. Rev., Volume 31 (2006) no. 2, pp. 71-90 | DOI

[138] Embrechts, Paul; Puccetti, Giovanni Bounds for functions of multivariate risks, J. Multivariate Anal., Volume 97 (2006) no. 2, pp. 526-547 | DOI | MR | Zbl

[139] Esteban-Pérez, Adrián; Morales, Juan M. Distributionally robust stochastic programs with side information based on trimmings, Math. Program. (2021) (https://doi.org/10.1007/s10107-021-01724-0) | DOI

[140] Fournier, Nicolas; Guillin, Arnaud On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Relat. Fields, Volume 162 (2015) no. 3-4, pp. 707-738 | DOI | MR | Zbl

[141] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert The elements of statistical learning, Springer Series in Statistics, Springer, 2016

[142] Fischetti, Matteo; Monaci, Michele Light robustness, Robust and online large-scale optimization: models and techniques for transportation systems (Ahuja, Ravindra K; Möhring, Rolf H; Zaroliagis, Christos D, eds.), Springer, 2009, pp. 61-84 | DOI | Zbl

[143] Fathony, Rizal; Rezaei, Ashkan; Bashiri, Mohammad Ali; Zhang, Xinhua; Ziebart, Brian Distributionally Robust Graphical Models, Advances in Neural Information Processing Systems 31 (Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., eds.), Curran Associates, Inc. (2018), pp. 8354-8365

[144] Farnia, Farzan; Tse, David A Minimax Approach to Supervised Learning, Advances in Neural Information Processing Systems 29 (Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; Garnett, R., eds.), Curran Associates, Inc., 2016, pp. 4240-4248

[145] Fu, Michael C. Handbook of simulation optimization, International Series in Operations Research & Management Science (Price, Camille C., ed.), Springer, 2016 | Zbl

[146] Gao, Rui; Chen, Xi; Kleywegt, Anton J. Wasserstein distributional robustness and regularization in statistical learning (2017) (https://arxiv.org/abs/1712.06050)

[147] Grünwald, Peter D.; Dawid, A. Philip Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory, Ann. Stat., Volume 32 (2004) no. 4, pp. 1367-1433 | MR | Zbl

[148] Goldfarb, Donald; Iyengar, Garud Robust portfolio selection problems, Math. Oper. Res., Volume 28 (2003) no. 1, pp. 1-38 | DOI | MR | Zbl

[149] Gao, Rui; Kleywegt, Anton J. Distributionally robust stochastic optimization with Wasserstein distance (2016) (https://arxiv.org/abs/1604.02199v2)

[150] Gao, Rui; Kleywegt, Anton J. Distributionally robust stochastic optimization with dependence structure (2017) (https://arxiv.org/abs/1701.04200)

[151] Gotoh, Jun-ya; Kim, Michael Jong; Lim, Andrew E. B. Robust empirical optimization is almost the same as mean–variance optimization, Oper. Res. Lett., Volume 46 (2018) no. 4, pp. 448-452 | DOI | MR | Zbl

[152] Gotoh, Jun-ya; Kim, Michael Jong; Lim, Andrew E. B. Calibration of distributionally robust empirical optimization models, Oper. Res., Volume 69 (2021) no. 5, pp. 1630-1650 | DOI | MR | Zbl

[153] Georghiou, Angelos; Kuhn, Daniel; Wiesemann, Wolfram The decision rule approach to optimization under uncertainty: methodology and applications, Comput. Manag. Sci., Volume 16 (2019) no. 4, pp. 545-576 | DOI | MR | Zbl

[154] Gong, Zhaohua; Liu, Chongyang; Sun, Jie; Teo, Kok Lay Distributionally robust L1-estimation in multiple linear regression, Optim. Lett., Volume 13 (2019) no. 4, pp. 935-947 | DOI | Zbl

[155] Gallego, Guillermo; Moon, Ilkyeong The distribution free newsboy problem: review and extensions, J. Oper. Res. Soc., Volume 44 (1993) no. 8, pp. 825-834 | DOI | Zbl

[156] Gabrel, Virginie; Murat, Cécile; Thiele, Aurélie Recent advances in robust optimization: An overview, Eur. J. Oper. Res., Volume 235 (2014) no. 3, pp. 471-483 | DOI | MR | Zbl

[157] Glanzer, Martin; Pflug, Georg Ch.; Pichler, Alois Incorporating statistical model error into the calculation of acceptability prices of contingent claims, Math. Program., Volume 174 (2019) no. 1-2, pp. 499-524 | DOI | MR | Zbl

[158] Gibbs, Alison L.; Su, Francis Edward On choosing and bounding probability metrics, Int. Stat. Rev., Volume 70 (2002) no. 3, pp. 419-435 | DOI | Zbl

[159] Goh, Joel; Sim, Melvyn Distributionally robust optimization and its tractable approximations, Oper. Res., Volume 58 (2010) no. 4, Part 1, pp. 902-917 | MR | Zbl

[160] Goh, Joel; Sim, Melvyn Robust Optimization Made Easy with ROME, Oper. Res., Volume 59 (2011) no. 4, pp. 973-985 | MR | Zbl

[161] Gilboa, Itzhak; Schmeidler, David Maxmin expected utility with non-unique prior, J. Math. Econ., Volume 18 (1989) no. 2, pp. 141-153 | DOI | Zbl

[162] Globerson, Amir; Tishby, Naftali The minimum information principle for discriminative learning, Proceedings of the 20th conference on Uncertainty in artificial intelligence, AUAI Press (2004), pp. 193-200

[163] Glasserman, Paul; Xu, Xingbo Robust risk measurement and model risk, Quant. Finance, Volume 14 (2014) no. 1, pp. 29-58 | DOI | MR | Zbl

[164] Gao, Rui; Xie, Liyan; Xie, Yao; Xu, Huan Robust Hypothesis Testing Using Wasserstein Uncertainty Sets, Advances in Neural Information Processing Systems (Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., eds.), Volume 31, Curran Associates, Inc. (2018)

[165] Guo, Shaoyan; Xu, Huifu; Zhang, Liwei Convergence analysis for mathematical programs with distributionally robust chance constraint, SIAM J. Optim., Volume 27 (2017) no. 2, pp. 784-816 | MR | Zbl

[166] Glasserman, Paul; Yang, Linan Bounding Wrong-Way Risk in CVA Calculation, Math. Financ., Volume 28 (2018) no. 1, pp. 268-305 | DOI | MR | Zbl

[167] Gorissen, Bram L.; Yanıkoğlu, İhsan; den Hertog, Dick A practical guide to robust optimization, Omega, Volume 53 (2015), pp. 124-137 | DOI

[168] Gül, Gökhan; Zoubir, Abdelhak M. Minimax robust hypothesis testing, IEEE Trans. Inf. Theory, Volume 63 (2017) no. 9, pp. 5572-5587 | MR | Zbl

[169] Gül, Gökhan Asymptotically Minimax Robust Hypothesis Testing (2017) (https://arxiv.org/abs/1711.07680)

[170] Haar, A. Üher linear Ungleichungen, Acta Sci. Math., Volume 2 (1924)

[171] Homem-de-Mello, Tito; Bayraksan, Güzin Monte Carlo sampling-based methods for stochastic optimization, Surv. Oper. Res. Manage. Sci., Volume 19 (2014) no. 1, pp. 56-85 | MR

[172] Han, Qiaoming; Du, Donglei; Zuluaga, Luis F. Technical Note-A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula, Oper. Res., Volume 62 (2014) no. 3, pp. 535-542 | MR | Zbl

[173] Hu, Zhaolin; Hong, L. Jeff Kullback-Leibler divergence constrained distributionally robust optimization, 2012 (Optimization Online http://www.optimization-online.org/DB_HTML/2012/11/3677.html)

[174] Hu, Jian; Homem-de-Mello, Tito; Mehrotra, Sanjay Risk-adjusted budget allocation models with application in homeland security, IIE Trans., Volume 43 (2011) no. 12, pp. 819-839

[175] Hu, Jian; Homem-de-Mello, Tito; Mehrotra, Sanjay Sample average approximation of stochastic dominance constrained programs, Math. Program., Volume 133 (2012) no. 1-2, pp. 171-201 | MR | Zbl

[176] Hu, Jian; Homem-de-Mello, Tito; Mehrotra, Sanjay Stochastically weighted stochastic dominance concepts with an application in capital budgeting, Eur. J. Oper. Res., Volume 232 (2014) no. 3, pp. 572-583 | MR | Zbl

[177] Hu, Zhaolin; Hong, L. Jeff; So, Anthony Man Cho Ambiguous probabilistic programs, 2013 (Optimization Online http://www.optimization-online.org/DB_HTML/2013/09/4039.html)

[178] Hettich, Rainer; Jongen, H. T. On first and second order conditions for local optima for optimization problems in finite dimensions, Methods Oper. Res., Volume 23 (1977), pp. 82-97 | Zbl

[179] Hettich, Rainer; Jongen, H. T. Semi-infinite programming: conditions of optimality and applications, Optimization Techniques, Lecture Notes in Control and Information Science (Stoer, J, ed.), Springer, 1978, pp. 82-97 | Zbl

[180] Hanasusanto, Grani A.; Kuhn, Daniel Robust Data-Driven Dynamic Programming, Advances in Neural Information Processing Systems 26 (Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q., eds.), Curran Associates, Inc., 2013, pp. 827-835

[181] Hanasusanto, Grani A.; Kuhn, Daniel Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls, Oper. Res., Volume 66 (2018) no. 3, pp. 849-869 | DOI | MR | Zbl

[182] Hettich, Rainer; Kortanek, Kenneth O. Semi-infinite programming: theory, methods, and applications, SIAM Rev., Volume 35 (1993) no. 3, pp. 380-429 | DOI | MR | Zbl

[183] Hanasusanto, Grani A.; Kuhn, Daniel; Wiesemann, Wolfram K-adaptability in two-stage robust binary programming, Oper. Res., Volume 63 (2015) no. 4, pp. 877-891 | DOI | MR | Zbl

[184] Hanasusanto, Grani A.; Kuhn, Daniel; Wiesemann, Wolfram K-adaptability in two-stage distributionally robust binary programming, Oper. Res. Lett., Volume 44 (2016) no. 1, pp. 6-11 | DOI | MR | Zbl

[185] Hanasusanto, Grani A.; Kuhn, Daniel; Wallace, Stein W.; Zymler, Steve Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Math. Program., Volume 152 (2015) no. 1-2, pp. 1-32 | DOI | MR | Zbl

[186] Hu, Jian; Li, Junxuan; Mehrotra, Sanjay A data-driven functionally robust approach for simultaneous pricing and order quantity decisions with unknown demand function, Oper. Res., Volume 67 (2019) no. 6, pp. 1564-1585 | MR | Zbl

[187] Hart, William E.; Laird, Carl D.; Watson, Jean-Paul; Woodruff, David L.; Hackebeil, Gabriel A.; Nicholson, Bethany L.; Siirola, John D. et al. Pyomo-optimization modeling in Python, Springer, 2017 | DOI

[188] Homem-de-Mello, Tito; Mehrotra, Sanjay A cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM J. Optim., Volume 20 (2009) no. 3, pp. 1250-1273 | DOI | MR | Zbl

[189] Hu, Jian; Mehrotra, Sanjay Robust and stochastically weighted multiobjective optimization models and reformulations, Oper. Res., Volume 60 (2012) no. 4, pp. 936-953 | MR | Zbl

[190] Hu, Jian; Mehrotra, Sanjay Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization, IIE Trans., Volume 47 (2015) no. 4, pp. 358-372

[191] Ho-Nguyen, Nam; Kılınç-Karzan, Fatma; Küçükyavuz, Simge; Lee, Dabeen Strong formulations for distributionally robust chance-constrained programs with left-hand side uncertainty under Wasserstein ambiguity (2020) (https://arxiv.org/abs/2007.06750)

[192] Ho-Nguyen, Nam; Kılınç-Karzan, Fatma; Küçükyavuz, Simge; Lee, Dabeen Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity, Math. Program. (2021) (https://doi.org/10.1007/s10107-020-01605-y) | DOI

[193] Hu, Weihua; Niu, Gang; Sato, Issei; Sugiyama, Masashi Does Distributionally Robust Supervised Learning Give Robust Classifiers?, 35th International Conference on Machine Learning, Proceedings of Machine Learning Research (2018), pp. 2034-2042

[194] Hannah, Lauren; Powell, Warren; Blei, David M. Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable, Advances in Neural Information Processing Systems 23 (Lafferty, J. D.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R. S.; Culotta, A., eds.), Curran Associates, Inc., 2010, pp. 820-828

[195] Heitsch, Holger; Römisch, Werner Scenario reduction algorithms in stochastic programming, Comput. Optim. Appl., Volume 24 (2003) no. 2-3, pp. 187-206 | DOI | MR | Zbl

[196] Heitsch, Holger; Römisch, Werner Scenario tree modeling for multistage stochastic programs, Math. Program., Volume 118 (2009) no. 2, pp. 371-406 | DOI | MR | Zbl

[197] Heitsch, Holger; Römisch, Werner Scenario tree reduction for multistage stochastic programs, Comput. Manag. Sci., Volume 6 (2009) no. 2, pp. 117-133 | DOI | MR | Zbl

[198] Huber, Peter J.; Ronchetti, Elvezio M. Robust Statistics, John Wiley & Sons, 2009 | DOI

[199] Hanasusanto, Grani A.; Roitch, Vladimir; Kuhn, Daniel; Wiesemann, Wolfram A distributionally robust perspective on uncertainty quantification and chance constrained programming, Math. Program., Volume 151 (2015) no. 1, pp. 35-62 | DOI | MR | Zbl

[200] Hanasusanto, Grani A.; Roitch, Vladimir; Kuhn, Daniel; Wiesemann, Wolfram Ambiguous joint chance constraints under mean and dispersion information, Oper. Res., Volume 65 (2017) no. 3, pp. 751-767 | DOI | MR | Zbl

[201] Heitsch, Holger; Römisch, Werner; Strugarek, Cyrille Stability of multistage stochastic programs, SIAM J. Optim., Volume 17 (2006) no. 2, pp. 511-525 | DOI | MR | Zbl

[202] Hettich, Rainer; Still, Georg Second order optimality conditions for generalized semi-infinite programming problems, Optimization, Volume 34 (1995) no. 3, pp. 195-211 | DOI | MR

[203] Halldórsson, Bjarni V.; Tütüncü, Reha H. An interior-point method for a class of saddle-point problems, J. Optim. Theory Appl., Volume 116 (2003) no. 3, pp. 559-590 | DOI | MR | Zbl

[204] Huber, Peter J. A robust version of the probability ratio test, Ann. Math. Stat. (1965), pp. 1753-1758 | DOI | MR | Zbl

[205] Huber, Peter J. The use of Choquet capacities in statistics, B. Int. Statist. Inst., Volume 45 (1973) no. 4, pp. 181-191 | MR

[206] Hurwicz, Leonid The generalized Bayes minimax principle: a criterion for decision making uncer uncertainty, Cowles Comm. Discuss. Paper: Stat. (1951)

[207] Huang, Jianqiu; Zhou, Kezhuo; Guan, Yongpei A Study of Distributionally Robust Multistage Stochastic Optimization (2017) (https://arxiv.org/abs/1708.07930)

[208] Isenberg, Natalie; Siirola, John D.; Gounaris, Chrysanthos Pyros: A Pyomo Robust Optimization Solver for Robust Process Design, 2020 Virtual AIChE Annual Meeting, AIChE (2020)

[209] Isii, Keiiti On sharpness of Tchebycheff-type inequalities, Ann. Inst. Stat. Math., Volume 14 (1962) no. 1, pp. 185-197 | DOI | MR | Zbl

[210] Jiang, Ruiwei; Guan, Yongpei Data-driven chance constrained stochastic program, Math. Program., Volume 158 (2016) no. 1-2, pp. 291-327 | DOI | MR | Zbl

[211] Jiang, Ruiwei; Guan, Yongpei Risk-averse two-stage stochastic program with distributional ambiguity, Oper. Res., Volume 66 (2018) no. 5, pp. 1390-1405 | DOI | MR | Zbl

[212] Jiang, Ruiwei; Guan, Yongpei; Watson, Jean-Paul Risk-averse stochastic unit commitment with incomplete information, IIE Trans., Volume 48 (2016) no. 9, pp. 838-854 | DOI

[213] Ji, Ran; Lejeune, Miguel A. Data-driven distributionally robust chance-constrained optimization with Wasserstein metric, J. Glob. Optim., Volume 79 (2021) no. 4, pp. 779-811 | MR | Zbl

[214] Ji, Ran; Lejeune, Miguel A. Data-driven optimization of reward-risk ratio measures, INFORMS J. Comput., Volume 33 (2021) no. 3, pp. 1120-1137 | MR | Zbl

[215] Jiang, Ruiwei; Shen, Siqian; Zhang, Yiling Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations, Oper. Res., Volume 65 (2017) no. 6, pp. 1638-1656 | DOI | MR | Zbl

[216] James, Gareth; Witten, Daniela; Hastie, Trevor; Tibshirani, Robert An introduction to statistical learning, Springer, 2013 | DOI

[217] Kannan, Rohit; Bayraksan, Güzin; Luedtke, James R. Data-driven sample average approximation with covariate information, 2020 (Optimization Online http:/www. optimization-online.org/DB_HTML/2020/07/7932.html)

[218] Kannan, Rohit; Bayraksan, Güzin; Luedtke, James R. Residuals-based distributionally robust optimization with covariate information, 2020 (https://arxiv.org/abs/2012.01088)

[219] Kapsos, Michalis; Christofides, Nicos; Rustem, Berç Worst-case robust Omega ratio, Eur. J. Oper. Res., Volume 234 (2014) no. 2, pp. 499-507 | DOI | MR | Zbl

[220] Kuhn, Daniel; Esfahani, Peyman Mohajerin; Nguyen, Viet Anh; Shafieezadeh-Abadeh, Soroosh Wasserstein distributionally robust optimization: Theory and applications in machine learning, Operations Research & Management Science in the Age of Analytics, INFORMS TutORials in Operations Research, 2019, pp. 130-166 | DOI

[221] Kim, Kibaek; Mehrotra, Sanjay A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management, Oper. Res., Volume 63 (2015) no. 6, pp. 1431-1451 | MR | Zbl

[222] Knight, Frank Hyneman Risk, uncertainty and profit, Houghton Mifflin, 1921

[223] Klabjan, Diego; Simchi-Levi, David; Song, Miao Robust Stochastic Lot-Sizing by Means of Histograms, Prod. Oper. Manage., Volume 22 (2013) no. 3, pp. 691-710 | DOI

[224] Kusuoka, Shigeo On law invariant coherent risk measures, Advances in Mathematical Economics (Kusuoka, Shigeo; Maruyama, Toru, eds.), Springer, 2001, pp. 83-95 | DOI | Zbl

[225] Kuhn, Daniel; Wiesemann, Wolfram; Georghiou, Angelos Primal and dual linear decision rules in stochastic and robust optimization, Math. Program., Volume 130 (2011) no. 1, pp. 177-209 | DOI | MR | Zbl

[226] Luedtke, James R.; Ahmed, Shabbir A sample approximation approach for optimization with probabilistic constraints, SIAM J. Optim., Volume 19 (2008) no. 2, pp. 674-699 | DOI | MR | Zbl

[227] Lam, Henry Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation, Proceedings of the 2016 Winter Simulation Conference (WSC ’16), IEEE (2016), pp. 178-192

[228] Lam, Henry Robust sensitivity analysis for stochastic systems, Math. Oper. Res., Volume 41 (2016) no. 4, pp. 1248-1275 | MR | Zbl

[229] Lam, Henry Sensitivity to serial dependency of input processes: A robust approach, Manage. Sci., Volume 64 (2018) no. 3, pp. 1311-1327

[230] Lam, Henry Recovering best statistical guarantees via the empirical divergence-based distributionally robust optimization, Oper. Res., Volume 67 (2019) no. 4, pp. 1090-1105 | MR | Zbl

[231] Moments in mathematics (Landau, Henry J., ed.), Proceeding of Symposia in Applied Mathematics, 37, American Mathematical Society, 1987 | DOI

[232] Lasserre, Jean B. Global optimization with polynomials and the problem of moments, SIAM J. Optim., Volume 11 (2001) no. 3, pp. 796-817 | DOI | MR | Zbl

[233] Love, David K.; Bayraksan, Güzin Two-stage likelihood robust linear program with application to water allocation under uncertainty, Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World (WSC ’13), IEEE (2013), pp. 77-88 | DOI

[234] Love, David K.; Bayraksan, Güzin Phi-divergence constrained ambiguous stochastic programs for data-driven optimization, 2016 (Optimization Online http://www.optimization-online.org/DB_HTML/2016/03/5350.html)

[235] Liu, Feng; Chen, Zhi; Wang, Shuming Globalized Distributionally Robust Counterpart: Model, Reformulation, and Applications, 2021 (Optimization Online http://www.optimization-online.org/DB_HTML/2021/11/8663.html)

[236] Lanckriet, Gert R. G.; El Ghaoui, Laurent; Bhattacharyya, Chiranjib; Jordan, Michael I. A robust minimax approach to classification, J. Mach. Learn. Res., Volume 3 (2002), pp. 555-582 | MR | Zbl

[237] Levy, Bernard C. Robust Hypothesis Testing With a Relative Entropy Tolerance, IEEE Trans. Inf. Theory, Volume 55 (2009) no. 1, pp. 413-421 | DOI | MR | Zbl

[238] Li, Jonathan Y. Technical Note-Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization, Oper. Res., Volume 66 (2018) no. 6, pp. 1533-1541 | MR | Zbl

[239] Li, Bowen; Jiang, Ruiwei; Mathieu, Johanna L. Ambiguous risk constraints with moment and unimodality information, Math. Program., Volume 173 (2019) no. 1-2, pp. 151-192 | MR | Zbl

[240] Li, Jonathan Y.; Kwon, Roy H. Portfolio selection under model uncertainty: a penalized moment-based optimization approach, J. Glob. Optim., Volume 56 (2013) no. 1, pp. 131-164 | MR | Zbl

[241] Lin, Qun; Loxton, Ryan; Teo, Kok Lay; Wu, Yong Hong; Yu, Changjun A new exact penalty method for semi-infinite programming problems, J. Comput. Appl. Math., Volume 261 (2014), pp. 271-286 | DOI | MR | Zbl

[242] Lee, Changhyeok; Mehrotra, Sanjay A distributionally-robust approach for finding support vector machines, 2015 (Optimization Online http://www.optimization-online.org/DB_HTML/2015/06/4965.html)

[243] Lam, Henry; Mottet, Clementine Tail analysis without parametric models: A worst-case perspective, Oper. Res., Volume 65 (2017) no. 6, pp. 1696-1711 | MR | Zbl

[244] Luo, Fengqiao; Mehrotra, Sanjay Decomposition Algorithm for Distributionally Robust Optimization using Wasserstein Metric with an Application to a Class of Regression Models, Eur. J. Oper. Res., Volume 278 (2019) no. 1, pp. 20-35 | MR | Zbl

[245] Luo, Fengqiao; Mehrotra, Sanjay Distributionally robust optimization with decision dependent ambiguity sets, Optim. Lett., Volume 14 (2020) no. 8, pp. 2565-2594 | MR | Zbl

[246] Lafferty, John D.; McCallum, Andrew; Pereira, Fernando C. N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, Proceedings of the Eighteenth International Conference on Machine Learning (ICML ’01), Morgan Kaufmann Publishers Inc. (2001), pp. 282-289

[247] Liu, Yongchao; Meskarian, Rudabeh; Xu, Huifu Distributionally Robust Reward-Risk Ratio Optimization with Moment Constraints, SIAM J. Optim., Volume 27 (2017) no. 2, pp. 957-985 | MR | Zbl

[248] Long, Daniel Zhuoyu; Qi, Jin Distributionally robust discrete optimization with Entropic Value-at-Risk, Oper. Res. Lett., Volume 42 (2014) no. 8, pp. 532-538 | DOI | MR | Zbl

[249] Lee, Jaeho; Raginsky, Maxim Minimax Statistical Learning with Wasserstein distances, Advances in Neural Information Processing Systems 31 (Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., eds.), Curran Associates, Inc., 2018, pp. 2692-2701

[250] López, Marco; Still, Georg Semi-infinite programming, Eur. J. Oper. Res., Volume 180 (2007) no. 2, pp. 491-518 | DOI | MR | Zbl

[251] Lu, Mengshi; Shen, Zuo-Jun Max A review of robust operations management under model uncertainty, Prod. Oper. Manage., Volume 30 (2021) no. 6, pp. 1927-1943

[252] Lim, Andrew E. B.; Shanthikumar, George J.; Shen, Max Z. J. Model uncertainty, robust optimization, and learning, Models, Methods, and Applications for Innovative Decision Making, INFORMS, 2006, pp. 66-94

[253] Long, Daniel; Sim, Melvyn; Zhou, Minglong The Dao of Robustness: Achieving Robustness in Prescriptive Analytics, 2020 (available at SSRN 3478930)

[254] Long, Daniel Zhuoyu; Sim, Melvyn; Zhou, Minglong Robust satisficing, Oper. Res. (2022) (https://doi.org/10.1287/opre.2021.2238)

[255] Lasserre, Jean B.; Weisser, Tillmann Distributionally robust polynomial chance-constraints under mixture ambiguity sets, Math. Program., Volume 185 (2021) no. 1, pp. 409-453 | DOI | MR | Zbl

[256] Li, Yueyao; Xing, Wenxun Globalized distributionally robust optimization based on samples (2022) (https://arxiv.org/abs/2205.02994)

[257] Liu, Yongchao; Yuan, Xiaoming; Zeng, Shangzhi; Zhang, Jin Primal–dual hybrid gradient method for distributionally robust optimization problems, Oper. Res. Lett., Volume 45 (2017) no. 6, pp. 625-630 | MR | Zbl

[258] Lam, Henry; Zhou, Enlu Quantifying uncertainty in sample average approximation, Proceedings of the 2015 Winter Simulation Conference (WSC ’15) (2015), pp. 3846-3857

[259] Lam, Henry; Zhou, Enlu The empirical likelihood approach to quantifying uncertainty in sample average approximation, Oper. Res. Lett., Volume 45 (2017) no. 4, pp. 301-307 | MR | Zbl

[260] Lotfi, Somayyeh; Zenios, Stavros A Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances, Eur. J. Oper. Res., Volume 269 (2018) no. 2, pp. 556-576 | DOI | MR | Zbl

[261] McDiarmid, Colin Concentration, Probabilistic Methods for Algorithmic Discrete Mathematics (Habib, Michel; McDiarmid, Colin; Ramirez-Alfonsin, Jorge; Reed, Bruce, eds.), Springer, 1998, pp. 195-248 | DOI | Zbl

[262] Mohajerin Esfahani, Peyman; Kuhn, Daniel Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations, Math. Program., Volume 171 (2018) no. 1, pp. 115-166 | DOI | MR | Zbl

[263] Mohajerin Esfahani, Peyman; Shafieezadeh-Abadeh, Soroosh; Hanasusanto, Grani A.; Kuhn, Daniel Data-driven inverse optimization with imperfect information, Math. Program., Volume 167 (2018) no. 1, pp. 191-234 | DOI | MR | Zbl

[264] Mei, Yu; Liu, Jia; Chen, Zhiping Distributionally Robust Second-Order Stochastic Dominance Constrained Optimization with Wasserstein Ball, SIAM J. Optim., Volume 32 (2022) no. 2, pp. 715-738 | DOI | MR | Zbl

[265] Mehrotra, Sanjay; Papp, Dávid A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization, SIAM J. Optim., Volume 24 (2014) no. 4, pp. 1670-1697 | DOI | MR | Zbl

[266] Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet Foundations of machine learning, MIT Press, 2018

[267] Mevissen, Martin; Ragnoli, Emanuele; Yu, Jia Yuan Data-driven Distributionally Robust Polynomial Optimization, Advances in Neural Information Processing Systems 26 (Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q., eds.), Curran Associates, Inc., 2013, pp. 37-45

[268] Mulvey, John M.; Vanderbei, Robert J.; Zenios, Stavros A. Robust optimization of large-scale systems, Oper. Res., Volume 43 (1995) no. 2, pp. 264-281 | DOI | MR | Zbl

[269] Mehrotra, Sanjay; Zhang, He Models and algorithms for distributionally robust least squares problems, Math. Program., Volume 146 (2014) no. 1-2, pp. 123-141 | DOI | MR | Zbl

[270] Müller, Alfred Integral probability metrics and their generating classes of functions, Adv. Appl. Probab. (1997), pp. 429-443 | DOI | Zbl

[271] Namkoong, Hongseok; Duchi, John C. Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences, Advances in Neural Information Processing Systems 29 (Lee, D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; Garnett, R., eds.), Curran Associates, Inc., 2016, pp. 2208-2216

[272] Namkoong, Hongseok; Duchi, John C. Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences, Advances in Neural Information Processing Systems (Lee, D.; Sugiyama, M.; Luxburg, U.; Guyon, I.; Garnett, R., eds.), Volume 29, Curran Associates, Inc. (2016)

[273] Namkoong, Hongseok; Duchi, John C. Variance-based Regularization with Convex Objectives, Advances in Neural Information Processing Systems 30 (Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., eds.), Curran Associates, Inc., 2017, pp. 2971-2980

[274] Nemirovski, Arkadi; Juditsky, Anatoli; Lan, Guanghui; Shapiro, Alexander Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., Volume 19 (2009) no. 4, pp. 1574-1609 | DOI | MR

[275] Nguyen, Viet Anh; Kuhn, Daniel; Mohajerin Esfahani, Peyman Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator, Oper. Res., Volume 70 (2022) no. 1, pp. 490-515 | DOI | MR | Zbl

[276] Nishimura, Kiyohiko G.; Ozaki, Hiroyuki Search and Knightian uncertainty, J. Econ. Theory, Volume 119 (2004) no. 2, pp. 299-333 | DOI | MR | Zbl

[277] Nishimura, Kiyohiko G.; Ozaki, Hiroyuki An Axiomatic Approach to ϵ-Contamination, J. Econ. Theory, Volume 27 (2006) no. 2, pp. 333-340 | DOI | MR | Zbl

[278] Natarajan, Karthik; Pachamanova, Dessislava; Sim, Melvyn Constructing risk measures from uncertainty sets, Oper. Res., Volume 57 (2009) no. 5, pp. 1129-1141 | DOI | MR | Zbl

[279] Noyan, Nilay; Rudolf, Gábor; Lejeune, Miguel A. Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics, INFORMS J. Comput., Volume 34 (2022) no. 2, pp. 729-751 | DOI | MR | Zbl

[280] Nemirovski, Arkadi; Shapiro, Alexander Convex approximations of chance constrained programs, SIAM J. Optim., Volume 17 (2006) no. 4, pp. 969-996 | DOI | MR | Zbl

[281] Nemirovski, Arkadi; Shapiro, Alexander Scenario Approximations of Chance Constraints, Probabilistic and Randomized Methods for Design under Uncertainty (Calafiore, Giuseppe C.; Dabbene, Fabrizio, eds.), Springer, 2006, pp. 3-47 | DOI | Zbl

[282] Natarajan, Karthik; Shi, Dongjian; Toh, Kim-Chuan A Probabilistic Model for Minmax Regret in Combinatorial Optimization, Oper. Res., Volume 62 (2014) no. 1, pp. 160-181 | DOI | MR | Zbl

[283] Natarajan, Karthik; Teo, Chung-Piaw On reduced semidefinite programs for second order moment bounds with applications, Math. Program., Volume 161 (2017) no. 1-2, pp. 487-518 | DOI | MR | Zbl

[284] Natarajan, Karthik; Teo, Chung-Piaw; Zheng, Zhichao Mixed 0-1 linear programs under objective uncertainty: A completely positive representation, Oper. Res., Volume 59 (2011) no. 3, pp. 713-728 | DOI | MR | Zbl

[285] Natarajan, Karthik; Teo, Chung-Piaw; Zheng, Zhichao Mixed 0-1 linear programs under objective uncertainty: A completely positive representation, Oper. Res., Volume 59 (2011) no. 3, pp. 713-728 | DOI | MR | Zbl

[286] Ning, Chao; You, Fengqi Data-driven decision making under uncertainty integrating robust optimization with principal component analysis and kernel smoothing methods, Comput. Chem. Eng., Volume 112 (2018), pp. 190-210 | DOI

[287] Newton, David; Yousefian, Farzad; Pasupathy, Raghu Stochastic gradient descent: Recent trends, Recent Advances in Optimization and Modeling of Contemporary Problems, INFORMS TutORials in Operations Research, 2018, pp. 193-220 | DOI

[288] Nguyen, Viet Anh; Zhang, Fan; Blanchet, Jose; Delage, Erick; Ye, Yinyu Robustifying conditional portfolio decisions via optimal transport, 2021 (https://arxiv.org/abs/2103.16451)

[289] Nürnberger, Günther Global unicity in optimization and approximation, Z. Angew. Math. Mech., Volume 65 (1985) no. 5, p. T319-T321 | MR

[290] Nürnberger, Günther Global unicity in semi-infinite optimization, Numer. Funct. Anal. Optim., Volume 8 (1985), pp. 173-191 | DOI | MR | Zbl

[291] Owen, Art B. Empirical likelihood, Chapman & Hall/CRC, 2001

[292] Pardo, Leandro Statistical inference based on divergence measures, Chapman & Hall/CRC, 2005

[293] Park, Jangho; Bayraksan, Güzin A Multistage Distributionally Robust Optimization Approach to Water Allocation under Climate Uncertainty (2020) (https://arxiv.org/abs/2005.07811)

[294] Postek, Krzysztof; Ben-Tal, Aharon; den Hertog, Dick; Melenberg, Bertrand Robust Optimization with Ambiguous Stochastic Constraints Under Mean and Dispersion Information, Oper. Res., Volume 66 (2018) no. 3, pp. 814-833 | DOI | MR | Zbl

[295] Peng, Chun; Delage, Erick Data-driven optimization with distributionally robust second-order stochastic dominance constraints, 2020 (Optimization Online http://www.optimization-online.org/DB_HTML/2020/12/8173.html)

[296] Poursoltani, Mehran; Delage, Erick Adjustable robust optimization reformulations of two-stage worst-case regret minimization problems, Oper. Res. (2021) (https://doi.org/10.1287/opre.2021.2159) | DOI

[297] Postek, Krzysztof; den Hertog, Dick; Melenberg, Bertrand Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures, SIAM Rev., Volume 58 (2016) no. 4, pp. 603-650 | DOI | MR | Zbl

[298] Philpott, A. B.; de Matos, V. L.; Kapelevich, Lea Distributionally robust SDDP, Comput. Manag. Sci., Volume 15 (2018) no. 3-4, pp. 431-454 | DOI | MR | Zbl

[299] Pasupathy, Raghu; Ghosh, Soumyadip Simulation optimization: A concise overview and implementation guide, Theory Driven by Influential Applications, INFORMS TutORials in Operations Research, 2013, pp. 122-150

[300] Pang Ho, Chin; Hanasusanto, Grani A. On Data-Driven Prescriptive Analytics with Side Information: A Regularized Nadaraya-Watson Approach, 2019 (Optimziation Online http://www.optimization-online.org/DB_HTML/2019/01/7043.html)

[301] Pichler, Alois Evaluations of Risk Measures for Different Probability Measures, SIAM J. Optim., Volume 23 (2013) no. 1, pp. 530-551 | DOI | MR | Zbl

[302] Petersen, Ian R.; James, Matthew R.; Dupuis, Paul Minimax optimal control of stochastic uncertain systems with relative entropy constraints, IEEE Trans. Autom. Control, Volume 45 (2000) no. 3, pp. 398-412 | DOI | MR | Zbl

[303] Popescu, Ioana A semidefinite programming approach to optimal-moment bounds for convex classes of distributions, Math. Oper. Res., Volume 30 (2005) no. 3, pp. 632-657 | DOI | MR | Zbl

[304] Popescu, Ioana Robust mean-covariance solutions for stochastic optimization, Oper. Res., Volume 55 (2007) no. 1, pp. 98-112 | DOI | MR | Zbl

[305] Pflug, Georg Ch.; Pichler, Alois A distance for multistage stochastic optimization models, SIAM J. Optim., Volume 22 (2012) no. 1, pp. 1-23 | DOI | MR | Zbl

[306] Pflug, Georg Ch.; Pichler, Alois The problem of ambiguity in stochastic optimization, Multistage Stochastic Optimization, Springer, 2014, pp. 229-255

[307] Pflug, Georg Ch.; Pohl, Mathias A Review on Ambiguity in Stochastic Portfolio Optimization, Set-Valued Var. Anal., Volume 26 (2018) no. 4, pp. 733-757 | DOI | MR | Zbl

[308] Pflug, Georg Ch.; Pichler, Alois; Wozabal, David The 1/N investment strategy is optimal under high model ambiguity, J. Bank. Financ., Volume 36 (2012) no. 2, pp. 410-417 | DOI

[309] Puccetti, Giovanni; Rüschendorf, Ludger et al. Bounds for joint portfolios of dependent risks, Stat. Risk Model., Volume 29 (2012) no. 2, pp. 107-132 | DOI | MR | Zbl

[310] Perakis, Georgia; Roels, Guillaume Regret in the newsvendor model with partial information, Oper. Res., Volume 56 (2008) no. 1, pp. 188-203 | DOI | MR | Zbl

[311] Puccetti, Giovanni; Rüschendorf, Ludger Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math., Volume 236 (2012) no. 7, pp. 1833-1840 | DOI | MR | Zbl

[312] Puccetti, Giovanni; Rüschendorf, Ludger Sharp bounds for sums of dependent risks, J. Appl. Probab., Volume 50 (2013) no. 1, pp. 42-53 | DOI | MR | Zbl

[313] Postek, Krzysztof; Romeijnders, Ward; den Hertog, Dick; van der Vlerk, Maarten H. An approximation framework for two-stage ambiguous stochastic integer programs under mean-MAD information, Eur. J. Oper. Res., Volume 274 (2019) no. 2, pp. 432-444 | DOI | MR | Zbl

[314] Prékopa, Andras Probabilistic Programming, Stochastic Programming (Ruszczyński, Andrzej; Shapiro, Alexander, eds.) (Handbooks in Operations Research and Management Science), Volume 10, Elsevier, 2003 | DOI | MR

[315] Prékopa, Andras On probabilistic constrained programming, Proceedings of the Princeton symposium on mathematical programming, Princeton University Press (1970), p. 138 | Zbl

[316] Prékopa, Andras Programming under probabilistic constraints with a random technology matrix, Statistics, Volume 5 (1974) no. 2, pp. 109-116 | MR | Zbl

[317] Pichler, Alois; Shapiro, Alexander Mathematical foundations of distributionally robust multistage optimization, SIAM J. Optim., Volume 31 (2021) no. 4, pp. 3044-3067 | DOI | MR | Zbl

[318] Pólik, Imre; Terlaky, Tamás A survey of the S-lemma, SIAM Rev., Volume 49 (2007) no. 3, pp. 371-418 | DOI | MR | Zbl

[319] Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming, John Wiley & Sons, 2005

[320] Pflug, Georg Ch.; Wozabal, David Ambiguity in portfolio selection, Quant. Finance, Volume 7 (2007) no. 4, pp. 435-442 | DOI | MR | Zbl

[321] Pichler, Alois; Xu, Huifu Quantitative stability analysis for minimax distributionally robust risk optimization, Math. Program., Volume 191 (2022), pp. 47-77 | DOI | MR | Zbl

[322] Qian, Peng-Yu; Wang, Zi-Zhuo; Wen, Zai-Wen A Composite Risk Measure Framework for Decision Making Under Uncertainty, J. Oper. Res. Soc. China, Volume 7 (2019) no. 1, pp. 43-68 | DOI | MR | Zbl

[323] Rachev, Svetlozar T. Probability metrics and the stability of stochastic models, John Wiley & Son Ltd, 1991

[324] Rahimian, Hamed; Bayraksan, Güzin; Homem-de-Mello, Tito Controlling Risk and Demand Ambiguity in Newsvendor Models, Eur. J. Oper. Res., Volume 279 (2019) no. 3, pp. 854-868 | DOI | MR | Zbl

[325] Rahimian, Hamed; Bayraksan, Güzin; Homem-de-Mello, Tito Identifying effective scenarios in distributionally robust stochastic programs with total variation distance, Math. Program., Volume 173 (2019) no. 1–2, pp. 393-430 | DOI | MR | Zbl

[326] Rahimian, Hamed; Bayraksan, Güzin; Homem-de-Mello, Tito Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance, 2021 (to appear in SIAM J. Optim., available on Optimization Online http://www.optimization-online.org/DB_HTML/2021/09/8588.html)

[327] Read, Timothy R. C.; Cressie, Noel A. C. Goodness-of-fit statistics for discrete multivariate data, Springer, 1988 | DOI

[328] Roos, Ernst; den Hertog, Dick Reducing conservatism in robust optimization, INFORMS J. Comput., Volume 32 (2020) no. 4, pp. 1109-1127 | MR | Zbl

[329] Reiss, Rolf-Dieter Approximate distributions of order statistics: with applications to nonparametric statistics, Springer, 1989 | DOI

[330] Razaviyayn, Meisam; Farnia, Farzan; Tse, David Discrete Rényi Classifiers, Advances in Neural Information Processing Systems 28 (Cortes, C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; Garnett, R., eds.), Curran Associates, Inc., 2015, pp. 3276-3284

[331] Reemtsen, Rembert; Görner, Stephan Numerical methods for semi-infinite programming: A survey, Semi-infinite Programming, Nonconvex Optimization and Its Applications (Reemtsen, R.; Rückmann, J. J., eds.), Kluwer Academic Publishers, 1998, pp. 195-275 | DOI | Zbl

[332] Rujeerapaiboon, Napat; Kuhn, Daniel; Wiesemann, Wolfram Robust Growth-Optimal Portfolios, Manage. Sci., Volume 62 (2016) no. 7, pp. 2090-2109 | DOI

[333] Rujeerapaiboon, Napat; Kuhn, Daniel; Wiesemann, Wolfram Chebyshev Inequalities for Products of Random Variables, Math. Oper. Res., Volume 43 (2018) no. 3, pp. 887-918 | DOI | MR | Zbl

[334] Rahimian, Hamed; Mehrotra, Sanjay Distributionally robust optimization: A review (2019) (https://arxiv.org/abs/1908.05659)

[335] Rockafellar, Tyrrell R. Coherent approaches to risk in optimization under uncertainty, OR Tools and Applications: Glimpses of Future Technologies, INFORMS TutORials in Operations Research, 2007, pp. 38-61

[336] Rockafellar, Tyrrell R. Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1974 | DOI

[337] Rockafellar, Tyrrell R. Convex Analysis, Princeton Landmarks in Mathematics, Princeton University Press, 1997

[338] Rachev, Svetlozar T.; Römisch, Werner Quantitative stability in stochastic programming: The method of probability metrics, Math. Oper. Res., Volume 27 (2002) no. 4, pp. 792-818 | DOI | MR | Zbl

[339] Rockafellar, Tyrrell R.; Royset, Johannes O. Measures of residual risk with connections to regression, risk tracking, surrogate models, and ambiguity, SIAM J. Optim., Volume 25 (2015) no. 2, pp. 1179-1208 | DOI | MR | Zbl

[340] Rachev, Svetlozar T.; Rüschendorf, Ludger Mass Transportation Problems: Volume I: Theory, Springer, 1998

[341] Ramachandra, Arjun; Rujeerapaiboon, Napat; Sim, Melvyn Robust Conic Satisficing, 2021 (https://arxiv.org/abs/2107.06714)

[342] Ruszczyński, Andrzej; Shapiro, Alexander Optimization of convex risk functions, Math. Oper. Res., Volume 31 (2006) no. 3, pp. 433-452 | DOI | MR | Zbl

[343] Rujeerapaiboon, Napat; Schindler, Kilian; Kuhn, Daniel; Wiesemann, Wolfram Scenario reduction revisited: fundamental limits and guarantees, Math. Program., Volume 191 (2022), pp. 207-242 | DOI | MR | Zbl

[344] Rockafellar, Tyrrell R.; Uryasev, Stanislav Optimization of conditional value-at-risk, J. Risk, Volume 2 (2000), pp. 21-42 | DOI

[345] Rockafellar, Tyrrell R.; Uryasev, Stanislav Conditional value-at-risk for general loss distributions, J. Bank. Financ., Volume 26 (2002) no. 7, pp. 1443-1471 | DOI

[346] Ruszczyński, Andrzej Nonlinear optimization, Princeton University Press, 2006 | DOI

[347] Royset, Johannes O.; Wets, Roger J.-B. Variational theory for optimization under stochastic ambiguity, SIAM J. Optim., Volume 27 (2017) no. 2, pp. 1118-1149 | DOI | MR | Zbl

[348] Römisch, Werner Stability of Stochastic Programming Problems, Stochastic Programming (Ruszczyński, Andrzej; Shapiro, Alexander, eds.) (Handbooks in Operations Research and Management Science), Volume 10, Elsevier, 2003, pp. 483-554 | DOI | MR

[349] Shapiro, Alexander; Ahmed, Shabbir On a class of minimax stochastic programs, SIAM J. Optim., Volume 14 (2004) no. 4, pp. 1237-1249 | DOI | MR | Zbl

[350] Shafieezadeh-Abadeh, Soroosh; Esfahani, Peyman Mohajerin; Kuhn, Daniel Distributionally Robust Logistic Regression, Advances in Neural Information Processing Systems 28 (Cortes, C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; Garnett, R., eds.), Curran Associates, Inc., 2015, pp. 1576-1584

[351] Shafieezadeh-Abadeh, Soroosh; Kuhn, Daniel; Esfahani, Peyman Mohajerin Regularization via Mass Transportation., J. Mach. Learn. Res., Volume 20 (2019) no. 103, pp. 1-68 | MR | Zbl

[352] Shafieezadeh-Abadeh, Soroosh; Nguyen, Viet Anh; Kuhn, Daniel; Mohajerin Esfahani, Peyman Wasserstein Distributionally Robust Kalman Filtering, Advances in Neural Information Processing Systems (Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R., eds.), Curran Associates, Inc. (2018), pp. 8474-8483

[353] Savage, Leonard J. The theory of statistical decision, J. Am. Stat. Assoc., Volume 46 (1951) no. 253, pp. 55-67 | DOI | Zbl

[354] Scarf, Herbert A min-max solution of an inventory problem, Studies in the mathematical theory of inventory and production (Scarf, Herbert; Arrow, KJ; Karlin, S, eds.), Stanford University Press, Stanford, CA, 1958, pp. 201-209

[355] Schultz, Rüdiger Some aspects of stability in stochastic programming, Ann. Oper. Res., Volume 100 (2000) no. 1-4, pp. 55-84 | DOI | MR | Zbl

[356] Smirnova, Elena; Dohmatob, Elvis; Mary, Jérémie Distributionally robust reinforcement learning, 2019 (https://arxiv.org/abs/1902.08708)

[357] Shapiro, Alexander; Dentcheva, Darinka; Ruszczyński, Andrzej Lectures on stochastic programming: modeling and theory, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2014

[358] Sriperumbudur, Bharath K.; Fukumizu, Kenji; Gretton, Arthur; Schölkopf, Bernhard; Lanckriet, Gert R. G. On the empirical estimation of integral probability metrics, Electron. J. Stat., Volume 6 (2012), pp. 1550-1599 | MR | Zbl

[359] Smola, Alexander J.; Gretton, Arthur; Song, Le; Schölkopf, Bernhard A Hilbert space embedding for distributions, 18th International Conference on Algorithmic Learning Theory (Hutter, Marcus; Servedio, Rocco A.; Takimoto, Eiji, eds.), Springer (2007), pp. 13-31 | DOI | Zbl

[360] Subramanyam, Anirudh; Gounaris, Chrysanthos; Wiesemann, Wolfram K-adaptability in two-stage mixed-integer robust optimization, Math. Program. Comput., Volume 12 (2020) no. 2, pp. 193-224 | DOI | MR | Zbl

[361] Shapiro, Alexander On Duality Theory of Conic Linear Problems, Semi-Infinite Programming: Recent Advances (Goberna, Miguel Á.; López, Marco A., eds.), Springer, 2001, pp. 135-165 | DOI | Zbl

[362] Shapiro, Alexander Minimax and risk averse multistage stochastic programming, Eur. J. Oper. Res., Volume 219 (2012) no. 3, pp. 719-726 | DOI | MR | Zbl

[363] Shapiro, Alexander On Kusuoka representation of law invariant risk measures, Math. Oper. Res., Volume 38 (2013) no. 1, pp. 142-152 | DOI | MR | Zbl

[364] Shapiro, Alexander Rectangular sets of probability measures, Oper. Res., Volume 64 (2016) no. 2, pp. 528-541 | DOI | MR | Zbl

[365] Shapiro, Alexander Distributionally robust stochastic programming, SIAM J. Optim., Volume 27 (2017) no. 4, pp. 2258-2275 | DOI | MR | Zbl

[366] Shapiro, Alexander Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming, Eur. J. Oper. Res., Volume 288 (2021) no. 1, pp. 1-13 | DOI | MR | Zbl

[367] Shang, Chao; Huang, Xiaolin; You, Fengqi Data-driven robust optimization based on kernel learning, Comput. Chem. Eng., Volume 106 (2017), pp. 464-479 | DOI

[368] Sion, Maurice On general minimax theorems, Pac. J. Math., Volume 8 (1958) no. 1, pp. 171-176 | DOI | MR | Zbl

[369] Staib, Matthew; Jegelka, Stefanie Distributionally robust deep learning as a generalization of adversarial training, NIPS workshop on Machine Learning and Computer Security, Volume 1 (2017)

[370] Staib, Matthew; Jegelka, Stefanie Distributionally Robust Optimization and Generalization in Kernel Methods, Advances in Neural Information Processing Systems (Wallach, H.; Larochelle, H.; Beygelzimer, A.; Alché-Buc, F. d; Fox, E.; Garnett, R., eds.), Volume 32, Curran Associates, Inc. (2019)

[371] Shapiro, Alexander; Kleywegt, Anton J. Minimax analysis of stochastic problems, Optim. Methods Softw., Volume 17 (2002) no. 3, pp. 523-542 | DOI | MR | Zbl

[372] Sun, Jie; Liao, Li-Zhi; Rodrigues, Brian Quadratic two-stage stochastic optimization with coherent measures of risk, Math. Program., Volume 168 (2018) no. 1-2, pp. 599-613 | DOI | MR | Zbl

[373] Smith, James E Generalized Chebychev inequalities: theory and applications in decision analysis, Oper. Res., Volume 43 (1995) no. 5, pp. 807-825 | DOI | MR | Zbl

[374] Shapiro, Alexander; Nemirovski, Arkadi On Complexity of Stochastic Programming Problems, Continuous Optimization: Current Trends and Modern Applications (Jeyakumar, Vaithilingam; Rubinov, Alexander, eds.), Springer, 2005, pp. 111-146 | DOI | Zbl

[375] Shapiro, Alexander; Nemirovski, Arkadi On complexity of stochastic programming problems, Continuous Optimization: Current Trends and Modern Applications (Jeyakumar, Vaithilingam; Rubinov, Alexander, eds.), Springer, 2005, pp. 111-146 | DOI | Zbl

[376] Sinha, Aman; Namkoong, Hongseok; Volpi, Riccardo; Duchi, John C. Certifying Some Distributional Robustness with Principled Adversarial Training, 2018 (https://arxiv.org/abs/1710.10571)

[377] Singh, Shashank; Póczos, Barnabás Minimax Distribution Estimation in Wasserstein Distance, 2018 (https://arxiv.org/abs/1802.08855)

[378] Schölkopf, Bernhard; Smola, Alexander J. Learning with kernels: support vector machines, regularization, optimization, and beyond, MIT Press, 2002

[379] See, Chuen-Teck; Sim, Melvyn Robust approximation to multiperiod inventory management, Oper. Res., Volume 58 (2010) no. 3, pp. 583-594 | MR | Zbl

[380] Sagnol, Guillaume; Stahlberg, Maximilian PICOS: A Python interface to conic optimization solvers, J. Open Source Softw., Volume 7 (2022) no. 70, p. 3915 | DOI

[381] Shalev-Shwartz, Shai; Ben-David, Shai Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014

[382] Steinwart, Ingo On the influence of the kernel on the consistency of support vector machines, J. Mach. Learn. Res., Volume 2 (2001) no. Nov, pp. 67-93 | MR | Zbl

[383] Still, Georg Generalized semi-infinite programming: theory and methods, Eur. J. Oper. Res., Volume 119 (1999), pp. 301-313 | DOI | Zbl

[384] Shapiro, Alexander; Tekaya, Wajdi; Soares, Murilo Pereira; da Costa, Joari Paulo Worst-case-expectation approach to optimization under uncertainty, Oper. Res., Volume 61 (2013) no. 6, pp. 1435-1449 | DOI | MR | Zbl

[385] Sim, Melvyn; Tang, Qinshen; Zhou, Minglong; Zhu, Taozeng The analytics of robust satisficing, 2021 (available at SSRN 3829562)

[386] Sutter, Tobias; Van Parys, Bart P. G.; Kuhn, Daniel A general framework for optimal data-driven optimization, 2020 (https://arxiv.org/abs/2010.06606)

[387] Shang, Chao; You, Fengqi Distributionally robust optimization for planning and scheduling under uncertainty, Comput. Chem. Eng., Volume 110 (2018), pp. 53-68 | DOI

[388] Shang, Chao; You, Fengqi Robust Optimization in High-Dimensional Data Space with Support Vector Clustering, IFAC-PapersOnLine, Volume 51 (2018) no. 18, pp. 19-24 | DOI

[389] Shang, Chao; You, Fengqi A data-driven robust optimization approach to scenario-based stochastic model predictive control, J. Process Control, Volume 75 (2019), pp. 24-39 | DOI

[390] Tsochantaridis, Ioannis; Joachims, Thorsten; Hofmann, Thomas; Altun, Yasemin Large margin methods for structured and interdependent output variables, J. Mach. Learn. Res., Volume 6 (2005) no. Sep, pp. 1453-1484 | MR | Zbl

[391] Tulabandhula, Theja; Rudin, Cynthia Machine learning with operational costs, J. Mach. Learn. Res., Volume 14 (2013) no. 1, pp. 1989-2028 | MR | Zbl

[392] Tulabandhula, Theja; Rudin, Cynthia On combining machine learning with decision making, Mach. Learn., Volume 97 (2014) no. 1-2, pp. 33-64 | DOI | MR | Zbl

[393] Tulabandhula, Theja; Rudin, Cynthia Robust optimization using machine learning for uncertainty sets, 2014 (https://arxiv.org/abs/1407.1097)

[394] Vajda, Igor Theory of statistical inference and information, Kluwer Academic Publishers, 1989

[395] Van Parys, Bart P. G. Efficient Data-Driven Optimization with Noisy Data, 2021 (https://arxiv.org/abs/2102.04363)

[396] Vandenberghe, Lieven; Boyd, Stephen; Comanor, Katherine Generalized Chebyshev bounds via semidefinite programming, SIAM Rev., Volume 49 (2007) no. 1, pp. 52-64 | DOI | MR | Zbl

[397] Villani, Cédric Optimal transport: old and new, Springer, 2008

[398] Vayanos, Phebe; Jin, Qing; Elissaios, George ROC++: Robust Optimization in C++, 2020 (https://arxiv.org/abs/2006.08741)

[399] Van Parys, Bart P. G.; Esfahani, Peyman Mohajerin; Kuhn, Daniel From data to decisions: Distributionally robust optimization is optimal, Manage. Sci., Volume 67 (2021) no. 6, pp. 3387-3402 | DOI

[400] Van Parys, Bart P. G.; Goulart, Paul J.; Kuhn, Daniel Generalized Gauss inequalities via semidefinite programming, Math. Program., Volume 156 (2016) no. 1, pp. 271-302 | DOI | MR | Zbl

[401] Van Parys, Bart P. G.; Goulart, Paul J.; Morari, Manfred Distributionally robust expectation inequalities for structured distributions, Math. Program., Volume 173 (2019) no. 1-2, pp. 251-280 | DOI | MR | Zbl

[402] Van Parys, Bart P. G.; Kuhn, Daniel; Goulart, Paul J.; Morari, Manfred Distributionally Robust Control of Constrained Stochastic Systems, IEEE Trans. Autom. Control, Volume 61 (2016) no. 2, pp. 430-442 | MR | Zbl

[403] Vidyashankar, Anand N.; Xu, Jie Stochastic Optimization Using Hellinger Distance, Proceedings of the 2015 Winter Simulation Conference (WSC ’15) (2015), pp. 3702-3713 | DOI

[404] Wang, Zi-Zhuo; Glynn, Peter W.; Ye, Yinyu Likelihood robust optimization for data-driven problems, Comput. Manag. Sci., Volume 13 (2016) no. 2, pp. 241-261 | DOI | MR | Zbl

[405] Wiesemann, Wolfram; Kuhn, Daniel; Rustem, Berç Robust Markov Decision Processes, Math. Oper. Res., Volume 38 (2013) no. 1, pp. 153-183 | DOI | MR | Zbl

[406] Wiesemann, Wolfram; Kuhn, Daniel; Sim, Melvyn Distributionally robust convex optimization, Oper. Res., Volume 62 (2014) no. 6, pp. 1358-1376 | DOI | MR | Zbl

[407] Wang, Shanshan; Li, Jinlin; Mehrotra, Sanjay A Solution Approach to Distributionally Robust Joint-Chance-Constrained Assignment Problems, INFORMS J. Optim. (2022) (https://doi.org/10.1287/ijoo.2021.0060) | MR

[408] Wiebe, Johannes; Misener, Ruth ROmodel: modeling robust optimization problems in Pyomo, Optim. Eng. (2021) (https://doi.org/10.1007/s11081-021-09703-2)

[409] Wozabal, David A framework for optimization under ambiguity, Ann. Oper. Res., Volume 193 (2012) no. 1, pp. 21-47 | DOI | MR | Zbl

[410] Wozabal, David Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach, Oper. Res., Volume 62 (2014) no. 6, pp. 1302-1315 | DOI | MR | Zbl

[411] Wang, Bin; Wang, Ruodu The complete mixability and convex minimization problems with monotone marginal densities, J. Multivariate Anal., Volume 102 (2011) no. 10, pp. 1344-1360 | DOI | MR | Zbl

[412] Wang, S.; Yuan, Y. Feasible method for semi-infinite programs, SIAM J. Optim., Volume 25 (2015) no. 4, pp. 2537-2560 | DOI | MR | Zbl

[413] Xie, Weijun; Ahmed, Shabbir Distributionally robust simple integer recourse, Comput. Manag. Sci., Volume 15 (2018) no. 3, pp. 351-367 | MR | Zbl

[414] Xie, Weijun; Ahmed, Shabbir On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems, SIAM J. Optim., Volume 28 (2018) no. 2, pp. 1151-1182 | MR | Zbl

[415] Xie, Weijun; Ahmed, Shabbir; Jiang, Ruiwei Optimized Bonferroni approximations of distributionally robust joint chance constraints, Math. Program., Volume 191 (2022), pp. 79-112 | MR | Zbl

[416] Xu, Guanglin; Burer, Samuel A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming, Comput. Manag. Sci., Volume 15 (2018) no. 1, pp. 111-134 | MR | Zbl

[417] Xu, Huan; Caramanis, Constantine; Mannor, Shie Robustness and regularization of support vector machines, J. Mach. Learn. Res., Volume 10 (2009) no. Jul, pp. 1485-1510 | MR | Zbl

[418] Xu, Huan; Caramanis, Constantine; Mannor, Shie Optimization under probabilistic envelope constraints, Oper. Res., Volume 60 (2012) no. 3, pp. 682-699 | MR | Zbl

[419] Xin, Linwei; Goldberg, David A. Time (in) consistency of multistage distributionally robust inventory models with moment constraints, Eur. J. Oper. Res. (2021), pp. 1127-1141 | MR | Zbl

[420] Xin, Linwei; Goldberg, David A. Distributionally robust inventory control when demand is a martingale, Math. Oper. Res. (2022) (https://doi.org/10.1287/moor.2021.1213)

[421] Xie, Weijun Tractable reformulations of two-stage distributionally robust linear programs over the type- Wasserstein ball, Oper. Res. Lett., Volume 48 (2020) no. 4, pp. 513-523 | MR | Zbl

[422] Xie, Weijun On distributionally robust chance constrained programs with Wasserstein distance, Math. Program., Volume 186 (2021) no. 1, pp. 115-155 | MR | Zbl

[423] Xu, Huifu; Liu, Yongchao; Sun, Hailin Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods, Math. Program., Volume 169 (2018) no. 2, pp. 489-529 | MR | Zbl

[424] Xu, Huan; Mannor, Shie Distributionally Robust Markov Decision Processes, Advances in Neural Information Processing Systems 23 (Lafferty, J. D.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R. S.; Culotta, A., eds.), Curran Associates, Inc., 2010, pp. 2505-2513

[425] Xu, Huan; Mannor, Shie Distributionally Robust Markov Decision Processes, Math. Oper. Res., Volume 37 (2012) no. 2, pp. 288-300 | MR | Zbl

[426] Xu, Mengwei; Wu, Soon-Yi; Jane, J. Ye Solving semi-infinite programs by smoothing projected gradient method, Comput. Math. Appl., Volume 59 (2014) no. 3, pp. 591-616 | MR | Zbl

[427] Yang, Insoon A dynamic game approach to distributionally robust safety specifications for stochastic systems, Automatica, Volume 94 (2018), pp. 94-101 | DOI | MR | Zbl

[428] Yang, Insoon Wasserstein Distributionally Robust Stochastic Control: A Data-Driven Approach, IEEE Trans. Autom. Control (2020) | MR | Zbl

[429] Yue, Jinfeng; Chen, Bintong; Wang, Min-Chiang Expected value of distribution information for the newsvendor problem, Oper. Res., Volume 54 (2006) no. 6, pp. 1128-1136 | MR | Zbl

[430] Yang, Xiaoqi; Chen, Zhangyou; Zhou, Jinchuan Optimality conditions for semi-infinite and generalized semi-infinite programs via lower order exact penalty functions, J. Optim. Theory Appl., Volume 169 (2016) no. 3, pp. 984-1012 | DOI | MR | Zbl

[431] Yanıkoğlu, İhsan; den Hertog, Dick Safe approximations of ambiguous chance constraints using historical data, INFORMS J. Comput., Volume 25 (2012) no. 4, pp. 666-681 | DOI | MR

[432] Yanıkoğlu, İhsan; Gorissen, Bram L.; den Hertog, Dick A survey of adjustable robust optimization, Eur. J. Oper. Res., Volume 277 (2019) no. 3, pp. 799-813 | DOI | MR | Zbl

[433] Yu, Xian; Shen, Siqian Multistage Distributionally Robust Mixed-Integer Programming with Decision-Dependent Moment-Based Ambiguity Sets, Math. Program. (2020) | DOI

[434] Yu, Pengqian; Xu, Huan Distributionally robust counterpart in Markov decision processes, IEEE Trans. Autom. Control, Volume 61 (2016) no. 9, pp. 2538-2543 | MR | Zbl

[435] Yang, Wenzhuo; Xu, Huan Distributionally robust chance constraints for non-linear uncertainties, Math. Program., Volume 155 (2016) no. 1-2, pp. 231-265 | DOI | MR | Zbl

[436] Yu, Hui; Zhai, Jia; Chen, Guang-Ya Robust Optimization for the Loss-Averse Newsvendor Problem, J. Optim. Theory Appl., Volume 171 (2016) no. 3, pp. 1008-1032 | DOI | MR | Zbl

[437] Zhang, Zhe; Ahmed, Shabbir; Lan, Guanghui Efficient Algorithms for Distributionally Robust Stochastic Optimization with Discrete Scenario Support, SIAM J. Optim., Volume 31 (2021) no. 3, pp. 1690-1721 | DOI | MR | Zbl

[438] Zhen, Jianzhe; den Hertog, Dick; Sim, Melvyn Adjustable Robust Optimization via Fourier-Motzkin Elimination, Oper. Res., Volume 66 (2018) no. 4, pp. 1086-1100 | DOI | MR | Zbl

[439] Zhang, Zheng; Denton, Brian T.; Xie, Xiaolan Branch and price for chance-constrained bin packing, INFORMS J. Comput., Volume 32 (2020) no. 3, pp. 547-564 | DOI | MR | Zbl

[440] Zhao, Chaoyue; Guan, Yongpei Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics, 2015 (Optimization Online http://www.optimization-online.org/DB_HTML/2015/07/5014.html)

[441] Zhao, Chaoyue; Guan, Yongpei Data-driven risk-averse stochastic optimization with Wasserstein metric, Oper. Res. Lett., Volume 46 (2018) no. 2, pp. 262-267 | DOI | MR | Zbl

[442] Zhao, Chaoyue; Jiang, Ruiwei Distributionally robust contingency-constrained unit commitment, IEEE Trans. Power Syst., Volume 33 (2018) no. 1, pp. 94-102 | DOI

[443] Zhu, Jia-Jie; Jitkrittum, Wittawat; Diehl, Moritz; Schölkopf, Bernhard Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation, International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research (2021), pp. 280-288

[444] Zhang, Yiling; Jiang, Ruiwei; Shen, Siqian Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information, SIAM J. Optim., Volume 28 (2018) no. 4, pp. 2922-2944 | DOI | MR | Zbl

[445] Zymler, Steve; Kuhn, Daniel; Rustem, Berç Distributionally robust joint chance constraints with second-order moment information, Math. Program., Volume 137 (2013) no. 1, pp. 167-198 | DOI | MR | Zbl

[446] Zymler, Steve; Kuhn, Daniel; Rustem, Berç Worst-Case Value at Risk of Nonlinear Portfolios, Manage. Sci., Volume 59 (2013) no. 1, pp. 172-188 | DOI

[447] Zhang, Jie; Xu, Huifu; Zhang, Liwei Quantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints, SIAM J. Optim., Volume 26 (2016) no. 3, pp. 1855-1882 | DOI | MR | Zbl

[448] Zhou, Zhengqing; Zhou, Zhengyuan; Bai, Qinxun; Qiu, Linhai; Blanchet, Jose; Glynn, Peter W. Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning, International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research (2021), pp. 3331-3339

[449] Žáčková, Jitka On minimax solutions of stochastic linear programming problems, Časopis pro pěstováná matematiky, Volume 091 (1966) no. 4, pp. 423-430 | DOI | MR

Cité par Sources :