Nous montrons que, si est l’ensemble des réels dans dont la fraction continue infinie est constituée de nombres entiers compris entre et , alors , où est la dimension de Hausdorff de , est la mesure de Hausdorff correspondant et où est l’ensemble de tous les nombres irrationnels de , i.e. ceux dont la fraction continue est infinie. Nous montrons aussi que cette propriété n’est pas générale en construisant une classe de systèmes de fonctions itérées sur , formés de similarités, pour lesquels ; cette limite inférieure s’étend sur les sous-ensembles finis de l’alphabet infini .
We prove that if by we denote the set of all numbers in whose infinite continued fraction expansions have all entries in the finite set , then , where is the Hausdorff dimension of , is the corresponding Hausdorff measure, and denotes the set of all irrational numbers in , i .e. those whose continued fraction expansion is infinite. We also show that this property is not too common by constructing a class of infinite iterated function systems on , consisting of similarities, for which ; the lower limit is taken over finite subsets of the countable infinite alphabet .
Accepté le :
Publié le :
DOI : 10.5802/jtnb.938
Mots clés : Continued fractions, Hausdorff measure, Gauss map, bounded distortion, iterated function systems
@article{JTNB_2016__28_1_261_0, author = {Urba\'nski, Mariusz and Zdunik, Anna}, title = {Continuity of the {Hausdorff} {Measure} of {Continued} {Fractions} and {Countable} {Alphabet} {Iterated} {Function} {Systems}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {261--286}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {1}, year = {2016}, doi = {10.5802/jtnb.938}, mrnumber = {3464621}, zbl = {1369.11057}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.938/} }
TY - JOUR AU - Urbański, Mariusz AU - Zdunik, Anna TI - Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 261 EP - 286 VL - 28 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.938/ DO - 10.5802/jtnb.938 LA - en ID - JTNB_2016__28_1_261_0 ER -
%0 Journal Article %A Urbański, Mariusz %A Zdunik, Anna %T Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems %J Journal de théorie des nombres de Bordeaux %D 2016 %P 261-286 %V 28 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.938/ %R 10.5802/jtnb.938 %G en %F JTNB_2016__28_1_261_0
Urbański, Mariusz; Zdunik, Anna. Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 1, pp. 261-286. doi : 10.5802/jtnb.938. http://www.numdam.org/articles/10.5802/jtnb.938/
[1] D. Hensley, « Continued fraction Cantor sets, Hausdorff dimension, and functional analysis », J. Number Theory 40 (1992), no. 3, p. 336-358. | DOI | MR | Zbl
[2] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability, xii+343 pages. | DOI | Zbl
[3] R. D. Mauldin & M. Urbański, « Dimensions and measures in infinite iterated function systems », Proc. London Math. Soc. (3) 73 (1996), no. 1, p. 105-154. | DOI | MR | Zbl
[4] —, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003, Geometry and dynamics of limit sets, xii+281 pages. | DOI
[5] L. Olsen, « Hausdorff and packing measure functions of self-similar sets: continuity and measurability », Ergodic Theory Dynam. Systems 28 (2008), no. 5, p. 1635-1655. | DOI | MR | Zbl
[6] T. Szarek, M. Urbański & A. Zdunik, « Continuity of Hausdorff measure for conformal dynamical systems », Discrete Contin. Dyn. Syst. 33 (2013), no. 10, p. 4647-4692. | DOI | Zbl
Cité par Sources :