En utilisant les cocyles de Sczech, nous calculons les traces de certaines involutions sur la cohomologie d’Eisenstein pour les sous-groupes de congruence principaux de groupes de Bianchi. Ces traces, combinées avec les résultats de [13, 14, 2], donnent des bornes inférieures explicites pour la cohomologie cuspidale de ces groupes. Les bornes asymptotiques inférieures qui découlent de nos résultats complètent les bornes asymptotiques supérieures récemment obtenues dans [4, 5, 12].
Using Sczech cocyles, we compute the traces of certain involutions on the Eisenstein cohomology of principal congruence subgroups of Bianchi groups. These traces, combined with results of [13, 14, 2], give explicit lower bounds for the cuspidal cohomology of these groups. The asymptotic lower bounds that follow from our results complement the recent asymptotic upper bounds found in [4, 5, 12].
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.937
Mots clés : Bianchi groups, Bianchi modular forms, Lefschetz numbers
@article{JTNB_2016__28_1_237_0, author = {\c{S}eng\"un, Mehmet Haluk and T\"urkelli, Seyfi}, title = {Lower {Bounds} on the {Dimension} of the {Cohomology} of {Bianchi} {Groups} via {Sczech} {Cocyles}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {237--260}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {1}, year = {2016}, doi = {10.5802/jtnb.937}, zbl = {1411.11044}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.937/} }
TY - JOUR AU - Şengün, Mehmet Haluk AU - Türkelli, Seyfi TI - Lower Bounds on the Dimension of the Cohomology of Bianchi Groups via Sczech Cocyles JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 237 EP - 260 VL - 28 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.937/ DO - 10.5802/jtnb.937 LA - en ID - JTNB_2016__28_1_237_0 ER -
%0 Journal Article %A Şengün, Mehmet Haluk %A Türkelli, Seyfi %T Lower Bounds on the Dimension of the Cohomology of Bianchi Groups via Sczech Cocyles %J Journal de théorie des nombres de Bordeaux %D 2016 %P 237-260 %V 28 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.937/ %R 10.5802/jtnb.937 %G en %F JTNB_2016__28_1_237_0
Şengün, Mehmet Haluk; Türkelli, Seyfi. Lower Bounds on the Dimension of the Cohomology of Bianchi Groups via Sczech Cocyles. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 1, pp. 237-260. doi : 10.5802/jtnb.937. http://www.numdam.org/articles/10.5802/jtnb.937/
[1] T. Berger, « On the Eisenstein ideal for imaginary quadratic fields », Compos. Math. 145 (2009), no. 3, p. 603-632. | DOI | MR | Zbl
[2] J. Blume-Nienhaus, Lefschetzzahlen für Galois-Operationen auf der Kohomologie arithmetischer Gruppen, Bonner Mathematische Schriften [Bonn Mathematical Publications], 230, Universität Bonn, Mathematisches Institut, Bonn, 1992, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991, vi+114 pages. | Zbl
[3] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original, x+306 pages. | DOI
[4] F. Calegari & M. Emerton, « Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms », Ann. of Math. (2) 170 (2009), no. 3, p. 1437-1446. | DOI | MR | Zbl
[5] T. Finis, F. Grunewald & P. Tirao, « The cohomology of lattices in », Experiment. Math. 19 (2010), no. 1, p. 29-63. | DOI | MR | Zbl
[6] G. Harder, « On the cohomology of », in Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, p. 139-150.
[7] —, « Period integrals of cohomology classes which are represented by Eisenstein series », in Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, p. 41-115. | DOI
[8] —, « Eisenstein cohomology of arithmetic groups. The case », Invent. Math. 89 (1987), no. 1, p. 37-118. | DOI | Zbl
[9] H. Ito, « A function on the upper half space which is analogous to the imaginary part of », J. Reine Angew. Math. 373 (1987), p. 148-165. | DOI | MR | Zbl
[10] —, « On a property of elliptic Dedekind sums », J. Number Theory 27 (1987), no. 1, p. 17-21. | DOI | MR | Zbl
[11] N. Krämer, Beiträge zur Arithmetik imaginärquadratischer Zahlkörper, Bonner Mathematische Schriften [Bonn Mathematical Publications], 161, Universität Bonn, Mathematisches Institut, Bonn, 1985, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1984, 157 pages. | Zbl
[12] S. Marshall, « Bounds for the multiplicities of cohomological automorphic forms on », Ann. of Math. (2) 175 (2012), no. 3, p. 1629-1651. | DOI | MR | Zbl
[13] J. Rohlfs, « Arithmetisch definierte Gruppen mit Galoisoperation », Invent. Math. 48 (1978), no. 2, p. 185-205. | DOI | MR | Zbl
[14] —, « On the cuspidal cohomology of the Bianchi modular groups », Math. Z. 188 (1985), no. 2, p. 253-269. | DOI | MR | Zbl
[15] J. Rohlfs & J. Schwermer, « An arithmetic formula for a topological invariant of Siegel modular varieties », Topology 37 (1998), no. 1, p. 149-159. | DOI | MR | Zbl
[16] J. Rohlfs & B. Speh, « On cuspidal cohomology of arithmetic groups and cyclic base change », Math. Nachr. 158 (1992), p. 99-108. | DOI | MR | Zbl
[17] R. Sczech, « Dedekind sums and power residue symbols », Compositio Math. 59 (1986), no. 1, p. 89-112. | Zbl
[18] J.-P. Serre, « Le problème des groupes de congruence pour SL2 », Ann. of Math. (2) 92 (1970), p. 489-527. | DOI | Zbl
[19] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kanô Memorial Lectures, 1, xiv+271 pages. | Zbl
[20] J. Smillie & K. Vogtmann, « Automorphisms of of imaginary quadratic integers », Proc. Amer. Math. Soc. 112 (1991), no. 3, p. 691-699. | DOI | MR | Zbl
[21] U. Weselmann, « Eisensteinkohomologie und Dedekindsummen für über imaginär-quadratischen Zahlkörpern », J. Reine Angew. Math. 389 (1988), p. 90-121. | DOI | Zbl
Cité par Sources :