On montre que les sommes binomiales et liées de caractères multiplicatifs
ont une évaluation simple pour suffisamment grand (pour si ).
We show that the binomial and related multiplicative character sums
have a simple evaluation for large enough (for if ).
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.927
Mots clés : Character Sums, Gauss sums, Jacobi Sums
@article{JTNB_2016__28_1_39_0, author = {Pigno, Vincent and Pinner, Christopher}, title = {Binomial {Character} {Sums} {Modulo} {Prime} {Powers}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {39--53}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {1}, year = {2016}, doi = {10.5802/jtnb.927}, mrnumber = {3464610}, zbl = {1416.11130}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.927/} }
TY - JOUR AU - Pigno, Vincent AU - Pinner, Christopher TI - Binomial Character Sums Modulo Prime Powers JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 39 EP - 53 VL - 28 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.927/ DO - 10.5802/jtnb.927 LA - en ID - JTNB_2016__28_1_39_0 ER -
%0 Journal Article %A Pigno, Vincent %A Pinner, Christopher %T Binomial Character Sums Modulo Prime Powers %J Journal de théorie des nombres de Bordeaux %D 2016 %P 39-53 %V 28 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.927/ %R 10.5802/jtnb.927 %G en %F JTNB_2016__28_1_39_0
Pigno, Vincent; Pinner, Christopher. Binomial Character Sums Modulo Prime Powers. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 1, pp. 39-53. doi : 10.5802/jtnb.927. http://www.numdam.org/articles/10.5802/jtnb.927/
[1] B. C. Berndt, R. J. Evans & K. S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998, A Wiley-Interscience Publication, xii+583 pages. | Zbl
[2] F. N. Castro & C. J. Moreno, « Mixed exponential sums over finite fields », Proc. Amer. Math. Soc. 128 (2000), no. 9, p. 2529-2537. | DOI | Zbl
[3] T. Cochrane, « Exponential sums modulo prime powers », Acta Arith. 101 (2002), no. 2, p. 131-149. | DOI | MR | Zbl
[4] T. Cochrane & C. Pinner, « Using Stepanov’s method for exponential sums involving rational functions », J. Number Theory 116 (2006), no. 2, p. 270-292. | DOI | MR | Zbl
[5] T. Cochrane & Z. Zheng, « Pure and mixed exponential sums », Acta Arith. 91 (1999), no. 3, p. 249-278. | DOI | MR | Zbl
[6] —, « Exponential sums with rational function entries », Acta Arith. 95 (2000), no. 1, p. 67-95. | DOI | MR | Zbl
[7] —, « A survey on pure and mixed exponential sums modulo prime powers », in Number theory for the millennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, p. 273-300. | Zbl
[8] K. Gong, W. Veys & D. Wan, « Power moments of Kloosterman sums », . | arXiv | DOI | MR | Zbl
[9] D. Han, « A hybrid mean value involving two-term exponential sums and polynomial character sums », Czechoslovak Math. J. 64(139) (2014), no. 1, p. 53-62. | DOI | MR | Zbl
[10] P. A. Leonard & K. S. Williams, « Evaluation of certain Jacobsthal sums », Boll. Un. Mat. Ital. B (5) 15 (1978), no. 3, p. 717-723. | Zbl
[11] R. Lidl & H. Niederreiter, Finite fields, second ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997, With a foreword by P. M. Cohn, xiv+755 pages.
[12] L. J. Mordell, « On Salié’s sum », Glasgow Math. J. 14 (1973), p. 25-26. | DOI | Zbl
[13] V. Pigno & C. Pinner, « Twisted monomial Gauss sums modulo prime powers », Funct. Approx. Comment. Math. 51 (2014), no. 2, p. 285-301. | DOI | MR | Zbl
[14] H. Salié, « Über die Kloostermanschen Summen », Math. Z. 34 (1932), no. 1, p. 91-109. | DOI | Zbl
[15] J. Wang, « On the Jacobi sums modulo », J. Number Theory 39 (1991), no. 1, p. 50-64. | DOI | Zbl
[16] A. Weil, « On some exponential sums », Proc. Nat. Acad. Sci. U. S. A. 34 (1948), p. 204-207. | DOI | MR | Zbl
[17] K. S. Williams, « Note on Salié’s sum », Proc. Amer. Math. Soc. 30 (1971), p. 393-394. | DOI | Zbl
[18] —, « On Salié’s sum », J. Number Theory 3 (1971), p. 316-317. | DOI | Zbl
[19] W. Zhang & Z. Xu, « On the Dirichlet characters of polynomials in several variables », Acta Arith. 121 (2006), no. 2, p. 117-124. | DOI | MR | Zbl
[20] W. Zhang & W. Yao, « A note on the Dirichlet characters of polynomials », Acta Arith. 115 (2004), no. 3, p. 225-229. | DOI | MR | Zbl
[21] W. Zhang & Y. Yi, « On Dirichlet characters of polynomials », Bull. London Math. Soc. 34 (2002), no. 4, p. 469-473. | DOI | MR | Zbl
Cité par Sources :