On développe une nouvelle méthode pour majorer les coefficients de Fourier hyperboliques et sphériques des formes de Maass définies par rapport à des réseaux uniformes généraux.
We develop a new method to bound the hyperbolic and spherical Fourier coefficients of Maass forms defined with respect to arbitrary uniform lattices.
Mots clés : Maass forms, Fourier coefficients, geodesics, periods, equidistribution, Sobolev norms, wave front lemma
@article{JTNB_2014__26_3_559_0, author = {Blomer, Valentin and Brumley, Farrell and Kontorovich, Alex and Templier, Nicolas}, title = {Bounding hyperbolic and spherical coefficients of {Maass} forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {559--578}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.879}, mrnumber = {3320492}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.879/} }
TY - JOUR AU - Blomer, Valentin AU - Brumley, Farrell AU - Kontorovich, Alex AU - Templier, Nicolas TI - Bounding hyperbolic and spherical coefficients of Maass forms JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 559 EP - 578 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.879/ DO - 10.5802/jtnb.879 LA - en ID - JTNB_2014__26_3_559_0 ER -
%0 Journal Article %A Blomer, Valentin %A Brumley, Farrell %A Kontorovich, Alex %A Templier, Nicolas %T Bounding hyperbolic and spherical coefficients of Maass forms %J Journal de théorie des nombres de Bordeaux %D 2014 %P 559-578 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.879/ %R 10.5802/jtnb.879 %G en %F JTNB_2014__26_3_559_0
Blomer, Valentin; Brumley, Farrell; Kontorovich, Alex; Templier, Nicolas. Bounding hyperbolic and spherical coefficients of Maass forms. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 3, pp. 559-578. doi : 10.5802/jtnb.879. http://www.numdam.org/articles/10.5802/jtnb.879/
[1] M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group action on homogeneous spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, (2000), x+200 pp. | MR | Zbl
[2] J. Bernstein and A. Reznikov, Sobolev norms of automorphic functionals, IMRN (2002), 2155–2174. | MR | Zbl
[3] J. Bernstein and A. Reznikov, Subconvexity bounds for triple -functions and representation theory. Ann. of Math. (2) 172, (2010), no. 3, 1679–1718. | MR | Zbl
[4] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press (1996). | MR | Zbl
[5] W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties. Duke Math. J. 71, (1993), no. 1, 143–179. | MR | Zbl
[6] A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71, (1993), no. 1, 181–209. | MR | Zbl
[7] I. Gelfand, M. Graev, and I. Piatetski-Shapiro, Representation Theory and Automorphic Functions. W.B. Saunders Co., Philadelphia, (1969). | MR | Zbl
[8] A. Good, Cusp forms and eigenfunctions of the Laplacian. Math. Ann., 255, (1981), 523–548. | MR | Zbl
[9] H. Oh and N. Shah, Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids, Israel J. Math, to appear. | MR | Zbl
[10] A. Reznikov, Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. J. Amer. Math. Soc. 21, (2008), no. 2, 439–477. | MR | Zbl
[11] A. Reznikov, Geodesic restrictions for the Casimir operator. J. Funct. Anal. 261, (2011), no. 9, 2437–2460. | MR | Zbl
[12] P. Sarnak, Fourth moments of Grössencharakteren zeta functions. Comm. Pure Appl. Math. 38, (1985), no. 2, 167–178. | MR | Zbl
[13] P. Sarnak, Integrals of products of eigenfunctions. Internat. Math. Res. Notices (1994), no. 6, 251–260. | MR | Zbl
[14] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. (2) 172, (2010), no. 2, 989–1094. | MR | Zbl
Cité par Sources :