Valeurs asymptotiques de multiplicités modulaires pour .
Nous étudions les constituants irréductibles de la réduction modulo d’une représentation algébrique irréductible du groupe pour une extension finie de . Nous montrons qu’asymptotiquement, la multiplicité de chaque constituant ne dépend que de la dimension de et du caractère central de sa réduction modulo . Nous appliquons ce résultat au calcul de la valeur asymptotique de multiplicités qui sont l’objet de la conjecture de Breuil-Mézard.
We study the irreducible constituents of the reduction modulo of irreducible algebraic representations of the group for a finite extension of . We show that asymptotically, the multiplicity of each constituent depends only on the dimension of and the central character of its reduction modulo . As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.
@article{JTNB_2014__26_2_465_0, author = {Rozensztajn, Sandra}, title = {Asymptotic values of modular multiplicities for $\operatorname{GL}_2$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {465--482}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.875}, mrnumber = {3320488}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.875/} }
TY - JOUR AU - Rozensztajn, Sandra TI - Asymptotic values of modular multiplicities for $\operatorname{GL}_2$ JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 465 EP - 482 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.875/ DO - 10.5802/jtnb.875 LA - en ID - JTNB_2014__26_2_465_0 ER -
%0 Journal Article %A Rozensztajn, Sandra %T Asymptotic values of modular multiplicities for $\operatorname{GL}_2$ %J Journal de théorie des nombres de Bordeaux %D 2014 %P 465-482 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.875/ %R 10.5802/jtnb.875 %G en %F JTNB_2014__26_2_465_0
Rozensztajn, Sandra. Asymptotic values of modular multiplicities for $\operatorname{GL}_2$. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 465-482. doi : 10.5802/jtnb.875. http://www.numdam.org/articles/10.5802/jtnb.875/
[BDJ10] K. Buzzard, F. Diamond, and F. Jarvis, On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., 155, 1 (2010), 105–161. | MR | Zbl
[BL94] L. Barthel and R. Livné, Irreducible modular representations of of a local field, Duke Math. J., 75, 2 (1994), 261–292. | MR | Zbl
[BLGG] T. Barnet-Lamb, T. Gee, and D. Geraghty, Serre weights for rank two unitary groups, to appear in Math Ann. | MR
[BM02] C. Breuil and A. Mézard, Multiplicités modulaires et représentations de et de en , Duke Math. J., 115(2), (2002), 205–310. With an appendix by Guy Henniart. | MR | Zbl
[BM12] C. Breuil and A. Mézard, Multiplicités modulaires raffinées, Bull. Soc. Math. France 142, (2014), 127–175. | MR
[Bon11] C. Bonnafé, Representations of , Algebra and Applications, 13, (2011), Springer-Verlag London Ltd., London. | MR | Zbl
[BP12] C. Breuil and V. Paškūnas, Towards a modulo Langlands correspondence for , Mem. Amer. Math. Soc., 216(1016):vi+114, (2012). | MR | Zbl
[Dia07] F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320 (2007), 187–206. Cambridge Univ. Press, Cambridge. | MR | Zbl
[Dav13] A. David, Calculs de multiplicités dans la conjecture de Breuil-Mézard, preprint, (2013).
[EG11] M. Emerton and T. Gee, A geometric perspective on the Breuil-Mézard conjecture 09, (2011).
[GK12] T. Gee and M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, preprint (2012). | MR
[Glo78] D.J. Glover, A study of certain modular representations, J. Algebra, 51(2), (1978), 425–475. | MR | Zbl
[Kis08] M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc., 21(2), (2008), 513–546. | MR | Zbl
[Kis09] M. Kisin, The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., 22(3), (2009), 641–690. | MR | Zbl
[Kis10] M. Kisin, The structure of potentially semi-stable deformation rings, Proceedings of the International Congress of Mathematicians, New Delhi, Hindustan Book Agency II, (2010), 294–311. | MR | Zbl
[Paš12] V. Paškūnas, On the Breuil-Mézard conjecture, preprint (2012). | MR
[Sch08] M.M. Schein, Weights in Serre’s conjecture for Hilbert modular forms, the ramified case, Israel J. Math., 166, (2008), 369–391. | MR | Zbl
Cité par Sources :