Étant donné un entier , soient des entiers et premiers entre eux deux à deux, soit une famille de sous-ensembles propres et non vides de qui contient un nombre “suffisant” des éléments, et soit une fonction . Est-ce qu’il existe au moins un nombre premier tel que divise le nombre pour un certain , mais ne divise pas ? Nous donnons une réponse positive à cette question dans le cas où les sont des puissances de nombres premiers et on impose certaines restrictions sur et .
Nous utilisons ce résultat pour prouver que, si et est un ensemble de trois ou plusieurs nombres premiers qui contient les diviseurs premiers de tous les nombres pour lesquels est un sous-ensemble propre, fini et non vide de , alors contient tous les nombres premiers.
Given an integer , let be pairwise coprime integers , a family of nonempty proper subsets of with “enough” elements, and a function . Does there exist at least one prime such that divides for some , but it does not divide ? We answer this question in the positive when the are prime powers and and are subjected to certain restrictions.
We use the result to prove that, if and is a set of three or more primes that contains all prime divisors of any number of the form for which is a finite nonempty proper subset of , then contains all the primes.
Mots clés : Agoh-Giuga conjecture, cyclic congruences, prime factorization, Pillai’s equation, Znam’s problem.
@article{JTNB_2014__26_2_399_0, author = {Leonetti, Paolo and Tringali, Salvatore}, title = {On a system of equations with primes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {399--413}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.873}, mrnumber = {3320486}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.873/} }
TY - JOUR AU - Leonetti, Paolo AU - Tringali, Salvatore TI - On a system of equations with primes JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 399 EP - 413 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.873/ DO - 10.5802/jtnb.873 LA - en ID - JTNB_2014__26_2_399_0 ER -
%0 Journal Article %A Leonetti, Paolo %A Tringali, Salvatore %T On a system of equations with primes %J Journal de théorie des nombres de Bordeaux %D 2014 %P 399-413 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.873/ %R 10.5802/jtnb.873 %G en %F JTNB_2014__26_2_399_0
Leonetti, Paolo; Tringali, Salvatore. On a system of equations with primes. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 399-413. doi : 10.5802/jtnb.873. http://www.numdam.org/articles/10.5802/jtnb.873/
[1] M. Aigner and G. M. Ziegler, Proofs from THE BOOK. 4th ed., Springer, (2010). | MR | Zbl
[2] M. Becheanu, M. Andronache, M. Bălună, R. Gologan, D. Şerbănescu, and V. Vornicu, Romanian Mathematical Competitions 2003. Societatea de Ştiinţe Matematice din România, (2003).
[3] A. R. Booker, On Mullin’s second sequence of primes. Integers A12, (2012), #A4. | MR
[4] D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga’s conjecture on primality. Amer. Math. Monthly 103, (1996), 40–50. | MR | Zbl
[5] L. Brenton and A. Vasiliu, Znám’s problem. Math. Mag. 75, 1 (2002), 3–11. | MR
[6] Y. Bugeaud and F. Luca, On Pillai’s Diophantine equation. New York J. Math. 12 (2006), 193–217. | MR | Zbl
[7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 6th ed. (revised by D.R. Heath-Brown and J.H. Silverman), Oxford University Press, 2008. | MR | Zbl
[8] J. C. Lagarias, Cyclic systems of simultaneous congruences. Int. J. Number Theory 6, 2 (2010), 219–245. | MR | Zbl
[9] F. Luca, On the diophantine equation . Indag. Mathem. (N.S.) 14, 2 (2003), 207–222. | MR | Zbl
[10] R. A. Mollin, Algebraic Number Theory. Discrete Mathematics and Its Applications, 2nd ed., Chapman and Hall/CRC, (2011). | MR | Zbl
[11] A. A. Mullin, Recursive function theory (a modern look at a Euclidean idea). Bull. Amer. Math. Soc. 69, (1963), 737.
[12] W. Narkiewicz, The Development of Prime Number Theory. Springer-Verlag, (2000). | MR | Zbl
[13] K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. 3, 1 (1892), 265–284. | MR
Cité par Sources :