Soit l’ensemble des points – approximables dans . Le théorème classique de Khintchine–Groshev suppose une condition de monotonicité sur la fonction approximante . Différents auteurs ont pu supprimer cette condition pour différents et . Mais elle ne peut pas être supprimée quand , Duffin et Schaeffer ayant donné un contre-exemple. Nous traitons le seul cas restant , et donc toutes les conditions non-nécessaires dans le théorème de Khintchine–Groshev sont maintenant enlevées.
Let denote the set of –approximable points in . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of and . It can not be removed for as Duffin–Schaeffer provided the counter example. We deal with the only remaining case and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.
Mots clés : Diophantine approximation, systems of linear forms, Khintchine–Groshev theorem.
@article{JTNB_2014__26_2_385_0, author = {Hussain, Mumtaz and Yusupova, Tatiana}, title = {A note on the weighted {Khintchine-Groshev} {Theorem}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {385--397}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.872}, mrnumber = {3320485}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.872/} }
TY - JOUR AU - Hussain, Mumtaz AU - Yusupova, Tatiana TI - A note on the weighted Khintchine-Groshev Theorem JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 385 EP - 397 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.872/ DO - 10.5802/jtnb.872 LA - en ID - JTNB_2014__26_2_385_0 ER -
%0 Journal Article %A Hussain, Mumtaz %A Yusupova, Tatiana %T A note on the weighted Khintchine-Groshev Theorem %J Journal de théorie des nombres de Bordeaux %D 2014 %P 385-397 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.872/ %R 10.5802/jtnb.872 %G en %F JTNB_2014__26_2_385_0
Hussain, Mumtaz; Yusupova, Tatiana. A note on the weighted Khintchine-Groshev Theorem. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 385-397. doi : 10.5802/jtnb.872. http://www.numdam.org/articles/10.5802/jtnb.872/
[1] V. Beresnevich, V. Bernik, M. Dodson and S. Velani, Classical metric Diophantine approximation revisited in Analytic number theory, (2009) Cambridge Univ. Press, 38–61. | MR | Zbl
[2] V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc., 179(846), (2006), x+91. | MR | Zbl
[3] V. Beresnevich, A. Haynes and S. Velani, Multiplicative zero-one laws and metric number theory, Acta Arith., 160,2 , (2013), 101–114. | MR | Zbl
[4] V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math.(2), 164,3, (2006), 971–992. | MR | Zbl
[5] V. Beresnevich and S. Velani, Schmidt’s theorem, Hausdorff measures, and slicing, Int. Math. Res. Not., 24, (2006), Art. ID 48794. | MR | Zbl
[6] V. Beresnevich and S. Velani, A note on zero-one laws in metrical Diophantine approximation, Acta Arith., 133, 4, (2008), 363–374. | MR | Zbl
[7] V. Beresnevich and S. Velani, Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Int. Math. Res. Not. IMRN, 1, (2010), 69–86. | MR | Zbl
[8] D. Dickinson and M. Hussain, The metric theory of mixed type linear forms, Int. J. Number Theory, 9, 1, (2013), 77–90. | MR | Zbl
[9] M. M. Dodson, Geometric and probabilistic ideas in the metric theory of Diophantine approximations, Uspekhi Mat. Nauk, 48, 5 (293), (1993), 77–106. | MR | Zbl
[10] R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine approximation, Duke Math. J., 8, (1941), 243–255. | MR | Zbl
[11] A. V. Groshev, Un théoreme sur les systèmes des formes lineaires, Doklady Akad. Nauk SSSR., 19, (1938), 151–152. | Zbl
[12] G. Harman, Metric number theory, London Mathematical Society Monographs New Series, The Clarendon Press Oxford University Press, New York, 18, (1998). | MR | Zbl
[13] M. Hussain and S. Kristensen, Metrical results on systems of small linear forms, Int. J. of Number theory, 9, 3, (2013), 769–782. | MR
[14] M. Hussain and J. Levesley, The metrical theory of simultaneously small linear forms, Funct. Approx. Comment. Math., 48, 2, (2013), 167–181. | MR
[15] A. Khintchine, Zur metrischen theorie der diophantischen approximationen, Math. Zeitschr., 24, 1, (1926), 706–714. | MR
[16] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 1-2, (1924), 115–125. | MR
[17] L. Li, Zero-one laws in simultaneous and multiplicative diophantine approximation, Mathematika, 59, 2, (2013), 321–332. | MR
[18] V. G. Sprindžuk, Metric theory of Diophantine approximations, V. H. Winston & Sons, Washington, D.C. Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics, (1979). | MR
[19] T. Yusupova, Problems in metric Diophantine approximations, D. Phil thesis. University of York, U. K., (2011).
Cité par Sources :