Soit une extension finie de d’anneau des entiers . Dans cet article, on construit une équivalence de catégories entre la catégorie des modules de Kisin de hauteur et la catégorie des groupes de Barsotti-Tate sur .
Let be a finite extension over and the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over .
@article{JTNB_2013__25_3_661_0, author = {Liu, Tong}, title = {The correspondence between {Barsotti-Tate} groups and {Kisin} modules when $p=2$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {661--676}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {3}, year = {2013}, doi = {10.5802/jtnb.852}, zbl = {06291371}, mrnumber = {3179680}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.852/} }
TY - JOUR AU - Liu, Tong TI - The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$ JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 661 EP - 676 VL - 25 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.852/ DO - 10.5802/jtnb.852 LA - en ID - JTNB_2013__25_3_661_0 ER -
%0 Journal Article %A Liu, Tong %T The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$ %J Journal de théorie des nombres de Bordeaux %D 2013 %P 661-676 %V 25 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.852/ %R 10.5802/jtnb.852 %G en %F JTNB_2013__25_3_661_0
Liu, Tong. The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 3, pp. 661-676. doi : 10.5802/jtnb.852. http://www.numdam.org/articles/10.5802/jtnb.852/
[1] C. Breuil, Schémas en groupes et corps des normes. Unpublished.
[2] C. Breuil, Représentations -adiques semi-stables et transversalité de Griffiths. Math. Ann., 307(2) (1997), 191–224. | MR | Zbl
[3] C. Breuil, Groupes -divisibles, groupes finis et modules filtrés. Ann. of Math.(2) 152(2) (2000), 489–549. | MR | Zbl
[4] C. Breuil, Integral -adic Hodge theory. In Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. 36 (2002), Pure Math., Math. Soc. Japan, Tokyo, 51–80. | MR | Zbl
[5] X. Caruso and T. Liu, Some bounds for ramification of -torsion semi-stable representations. J. Algebra, 325 (2011), 70–96. | MR | Zbl
[6] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In Journées de Géométrie Algébrique de Rennes, (Rennes, 1978), Vol.III, volume 65 of Astérisque, . Soc. Math. France Paris (1979), 3–80. | Numdam | MR | Zbl
[7] J.-M. Fontaine, Le corps des périodes -adiques. Astérisque, 223 (1994), 59–111. | Numdam | MR | Zbl
[8] J.-M. Fontaine, Représentations -adiques semi-stables. Astérisque, 223 (1994), 113–184. With an appendix by Pierre Colmez, Périodes -adiques (Bures-sur-Yvette, 1988). | Numdam | MR | Zbl
[9] W. Kim, The classification of -divisible groups over 2-adic discrete valuation rings. Math. Res. Lett., 19(1) (2012), 121–141. | MR
[10] M. Kisin, Crystalline representations and -crystals. In Algebraic geometry and number theory,Progr. Math. 253, Birkhäuser Boston, Boston, MA, (2006), 459–496. | MR | Zbl
[11] M. Kisin Modularity of 2-adic Barsotti-Tate representations. Invent. Math., 178(3) (2009), 587–634. | MR
[12] M. Kisin Moduli of finite flat group schemes, and modularity. Ann. of Math.(2), 170(3) (2009), 1085–1180. | MR | Zbl
[13] E. Lau, A relation between dieudonne displays and crystalline dieudonne theory. arXiv:1006.2720.
[14] T. Liu, Torsion -adic Galois representations and a conjecture of fontaine. Ann. Sci. École Norm. Sup. (4), 40(4) (2007), 633–674. | MR | Zbl
[15] T. Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compos. Math., 144(1) (2008), 61–88. | MR | Zbl
[16] T. Liu, A note on lattices in semi-stable representations. Mathematische Annalen, 346(1) (2010), 117–138. | MR | Zbl
[17] M. Raynaud, Schémas en groupes de type . Bull. Soc. Math. France, 102 (1974), 241–280. | Numdam | MR | Zbl
[18] J. T. Tate, -divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, (1967), 158–183. | MR | Zbl
Cité par Sources :