Soit , avec un nombre entier, un corps de nombres cubique. Nous montrons que les éléments avec (où est un nombre rationnel) forment un groupe qui est isomorphe au groupe des points rationnels de la courbe elliptique . Nous démontrons aussi comment utiliser cette observation pour construire des extensions quadratiques non ramifiées de .
Let , with a positive integer, be a pure cubic number field. We show that the elements whose squares have the form for rational numbers form a group isomorphic to the group of rational points on the elliptic curve . This result will allow us to construct unramified quadratic extensions of pure cubic number fields .
@article{JTNB_2012__24_3_691_0, author = {Lemmermeyer, Franz}, title = {Binomial squares in pure cubic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {691--704}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {3}, year = {2012}, doi = {10.5802/jtnb.817}, zbl = {1269.11108}, mrnumber = {3010635}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.817/} }
TY - JOUR AU - Lemmermeyer, Franz TI - Binomial squares in pure cubic number fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 691 EP - 704 VL - 24 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.817/ DO - 10.5802/jtnb.817 LA - en ID - JTNB_2012__24_3_691_0 ER -
%0 Journal Article %A Lemmermeyer, Franz %T Binomial squares in pure cubic number fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 691-704 %V 24 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.817/ %R 10.5802/jtnb.817 %G en %F JTNB_2012__24_3_691_0
Lemmermeyer, Franz. Binomial squares in pure cubic number fields. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 691-704. doi : 10.5802/jtnb.817. http://www.numdam.org/articles/10.5802/jtnb.817/
[1] P. Barrucand, H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields. J. Number Theory 2 (1970), 7–21. | MR | Zbl
[2] M. Bhargava, A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. ArXiv:1006.1002v2.
[3] G. Billing, Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht Eins. Nova Acta Reg. Soc. Ups. (IV) 11 (1938). | Zbl
[4] H. Cohen, J. Martinet, Heuristics on class groups: some good primes are not too good. Math. Comp. 63 (1994), no. 207, 329–334. | MR | Zbl
[5] H. Cohn, A classical invitation to algebraic numbers and class fields. Springer-Verlag, 1978. | MR
[6] H. Eisenbeis, G. Frey, B. Ommerborn, Computation of the 2-rank of pure cubic fields. Math. Comp. 32 (1978), 559–569. | MR | Zbl
[7] L. Euler, Vollständige Anleitung zur Algebra (E387, E388). St. Petersburg, 1770.
[8] T. Honda, Pure cubic fields whose class numbers are multiples of three. J. Number Theory 3 (1971), 7–12. | MR | Zbl
[9] D. Husemöller, Elliptic Curves. 2nd ed., Springer-Verlag, 2004. | MR | Zbl
[10] J.-L. Lagrange, Sur la solution des problèmes indéterminés du second degré. Mem. Acad. Sci. Berlin, 1769.
[11] J.-L. Lagrange, Additions à l’analyse indéterminée. Lyon, 1774.
[12] F. Lemmermeyer, A note on Pépin’s counter examples to the Hasse principle for curves of genus . Abh. Math. Sem. Hamburg 69 (1999), 335–345. | MR | Zbl
[13] F. Lemmermeyer, Why is the class number of even? Math. Bohemica, to appear. | EuDML | Zbl
[14] T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées. J. Math. Pures Appl. 4 (1925), 209–270. | EuDML | JFM
[15] pari, available from http://pari.math.u-bordeaux.fr
[16] sage, available from http://sagemath.org
[17] P. Satgé, Un analogue du calcul de Heegner. Invent. Math. 87 (1987), 425–439. | EuDML | MR | Zbl
[18] J. Silverman, J. Tate, Rational Points on Elliptic Curves. Springer-Verlag, 1992. | MR | Zbl
Cité par Sources :