Nous donnons un ensemble infini de corps de degré monogènes distincts dont la clôture normale a pour groupe de Galois .
We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group .
Mots clés : Galois Group, Septimic Field, Power Basis
@article{JTNB_2012__24_2_369_0, author = {Lavallee, Melisa J. and Spearman, Blair K. and Yang, Qiduan}, title = {PSL$(2,7)$ septimic fields with a power basis}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {369--375}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {2}, year = {2012}, doi = {10.5802/jtnb.801}, zbl = {1280.11062}, mrnumber = {2950697}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.801/} }
TY - JOUR AU - Lavallee, Melisa J. AU - Spearman, Blair K. AU - Yang, Qiduan TI - PSL$(2,7)$ septimic fields with a power basis JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 369 EP - 375 VL - 24 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.801/ DO - 10.5802/jtnb.801 LA - en ID - JTNB_2012__24_2_369_0 ER -
%0 Journal Article %A Lavallee, Melisa J. %A Spearman, Blair K. %A Yang, Qiduan %T PSL$(2,7)$ septimic fields with a power basis %J Journal de théorie des nombres de Bordeaux %D 2012 %P 369-375 %V 24 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.801/ %R 10.5802/jtnb.801 %G en %F JTNB_2012__24_2_369_0
Lavallee, Melisa J.; Spearman, Blair K.; Yang, Qiduan. PSL$(2,7)$ septimic fields with a power basis. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 369-375. doi : 10.5802/jtnb.801. http://www.numdam.org/articles/10.5802/jtnb.801/
[1] H. Cohen, A Course in Computational Algebraic Number Theory. Springer-Verlag, 2000. | MR | Zbl
[2] I. Gaál, Diophantine equations and power integral bases. New Computational Methods. Birkhauser, Boston, 2002. | MR | Zbl
[3] M.-N. Gras, Non-monogénéité de l’anneau des entiers des extensions cycliques de de degré premier . J. Number Theory 23 (1986), 347–353. | MR | Zbl
[4] C. U. Jensen, A. Ledet, N. Yui, Generic Polynomials, constructive aspects of Galois theory, MSRI Publications. Cambridge University Press, 2002. | MR | Zbl
[5] M. J. Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, Dihedral quintic fields with a power basis. Mathematical Journal of Okayama University, vol. 47 (2005), 75–79. | MR | Zbl
[6] Y. Motoda, T. Nakahara and K. H Park, On power integral bases of the 2-elementary abelian extension fields. Trends in Mathematics, Information Center for Mathematical Sciences, Volume 8 (June 2006), Number 1, 55–63.
[7] M. Nair, Power free values of polynomials. Mathematika 23 (1976), 159–183. | MR | Zbl
[8] B. K. Spearman, A. Watanabe and K. S. Williams, PSL(2,5) sextic fields with a power basis. Kodai Math. J., Vol. 29 (2006), No. 1, 5–12. | MR | Zbl
[9] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Third Edition, Springer, 2000. | MR | Zbl
Cité par Sources :