Soient et des corps de nombres. Nous décrivons une nouvelle méthode permettant de déterminer (s’il en existe) tous les isomorphismes . L’algorithme est particulièrement efficace lorsqu’il existe un unique isomorphisme.
Let and be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, . The algorithm is particularly efficient if there is only one isomorphism.
@article{JTNB_2012__24_2_293_0, author = {van Hoeij, Mark and Pal, Vivek}, title = {Isomorphisms of algebraic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {293--305}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {2}, year = {2012}, doi = {10.5802/jtnb.797}, zbl = {1282.11142}, mrnumber = {2950693}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.797/} }
TY - JOUR AU - van Hoeij, Mark AU - Pal, Vivek TI - Isomorphisms of algebraic number fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 293 EP - 305 VL - 24 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.797/ DO - 10.5802/jtnb.797 LA - en ID - JTNB_2012__24_2_293_0 ER -
%0 Journal Article %A van Hoeij, Mark %A Pal, Vivek %T Isomorphisms of algebraic number fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 293-305 %V 24 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.797/ %R 10.5802/jtnb.797 %G en %F JTNB_2012__24_2_293_0
van Hoeij, Mark; Pal, Vivek. Isomorphisms of algebraic number fields. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 293-305. doi : 10.5802/jtnb.797. http://www.numdam.org/articles/10.5802/jtnb.797/
[1] Granville, A., “Bounding the coefficients of a divisor of a given polynomial". Monatsh. Math. 109 (1990), 271–277. | MR | Zbl
[2] Conrad, Kieth., “The different ideal". Expository papers/Lecture notes. Available at: http://www.math.uconn.edu/kconrad/blurbs/gradnumthy/different.pdf
[3] Monagan, M. B., “A Heuristic Irreducibility Test for Univariate Polynomials". J. of Symbolic Comp., 13, No. 1, Academic Press (1992) 47–57. | MR | Zbl
[4] Dahan, X. and Schost, É., “Sharp estimates for triangular sets". In Proceedings of the 2004 international Symposium on Symbolic and Algebraic Computation (Santander, Spain, July 04 – 07, 2004). ISSAC ’04. ACM, New York, NY, 103–110. | MR
[5] Database by Jürgen Klüners and Gunter Malle, located at: http://www.math.uni-duesseldorf.de/klueners/minimum/minimum.html
[6] Belabas, Karim., “A relative van Hoeij algorithm over number fields". J. Symbolic Computation, Vol. 37 (2004), no. 5, pp. 641–668. | MR
[7] Website with implementations and Degree 81 examples: http://www.math.fsu.edu/vpal/Iso/
[8] van Hoeij, Mark., “Factoring Polynomials and the Knapsack Problem." J. Number Th. 95 (2002), 167–189. | MR
[9] Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L., “Factoring polynomials with rational coefficients". Mathematische Annalen 261 (4) (1982), 515–534. | MR | Zbl
[10] M. van Hoeij and A. Novocin, “ Gradual sub-lattice reduction and a new complexity for factoring polynomials", accepted for proceedings of LATIN 2010. | MR
[11] Cohen, Henri, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138, Springer-Verlag, 1993. | MR | Zbl
Cité par Sources :