Nous explorons numériquement les valeurs de la forme hermitienne
lorsque . Nous améliorons la majoration actuelle et exhibons un graphique conjectural de la distribution asymptotique de ses valeurs propres en exploitant des résultats de calculs intensifs. L’une des conséquences est que la distribution asymptotique existe probablement mais n’est pas absolument continue par rapport à la mesure de Lebesgue.
We explore numerically the eigenvalues of the hermitian form
when . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
Mots clés : Large sieve inequality, circle method, Jackson polynomials, Hausdorff moment problem
@article{JTNB_2010__22_1_181_0, author = {Ramar\'e, Olivier}, title = {Eigenvalues in the large sieve inequality, {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {181--196}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.710}, zbl = {1220.11117}, mrnumber = {2675879}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.710/} }
TY - JOUR AU - Ramaré, Olivier TI - Eigenvalues in the large sieve inequality, II JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 181 EP - 196 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.710/ DO - 10.5802/jtnb.710 LA - en ID - JTNB_2010__22_1_181_0 ER -
Ramaré, Olivier. Eigenvalues in the large sieve inequality, II. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 181-196. doi : 10.5802/jtnb.710. http://www.numdam.org/articles/10.5802/jtnb.710/
[1] E. Bombieri, Le grand crible dans la théorie analytique des nombres. Astérisque 18 (1987). | Numdam | MR | Zbl
[2] J.M. Borwein and A.S. Lewis, On the convergence of moment problems. Trans. Amer. Math. Soc. 325(1) (1991), 249–271. | MR | Zbl
[3] G. Greaves, An algorithm for the Hausdorff moment problem. Numerische Mathematik 39(2) (1982), 231–238. | EuDML | MR | Zbl
[4] F. Hausdorff, Summationsmethoden und Momentfolgen. I. Math. Z. 9 (1921), 74–109. | EuDML | JFM | MR
[5] F. Hausdorff, Summationsmethoden und Momentfolgen. II. Math. Z. 9 (1921), 280–299. | EuDML | JFM | MR
[6] F. Hausdorff, Momentenprobleme für ein endliches Intervall. Math. Z. 16 (1923), 220–248. | EuDML | JFM | MR
[7] H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics (Berlin) 227. Springer–Verlag, Berlin–New York, 1971. | MR | Zbl
[8] I.J. Schoenberg, R. Askey and A. Sharma, Hausdorff’s moment problem and expansions in Legendre polynomials. J. Math. Anal. Appl. 86 (1982), 237–245. | MR | Zbl
[9] O. Ramaré, Eigenvalues in the large sieve inequality. Funct. Approximatio, Comment. Math. 37 (2007), 7–35. | MR | Zbl
[10] A. Selberg, Collected papers. Springer–Verlag, Berlin, 1991. | MR | Zbl
[11] J. Szabados, On the convergence and saturation problem of the Jackson polynomials. Acta Math. Acad. Sci. Hungar. 24 (1973), 399–406. | MR | Zbl
Cité par Sources :