Dans cet article, nous complétons les résultats de J.-L. Nicolas [15], en déterminant tous les éléments de l’ensemble pour lequel la fonction de partition (c-à-d le nombre de partitions de en parts dans ) est paire pour tout . Nous donnons aussi un équivalent asymptotique à la fonction de décompte de cet ensemble.
Improving on some results of J.-L. Nicolas [15], the elements of the set , for which the partition function (i.e. the number of partitions of with parts in ) is even for all are determined. An asymptotic estimate to the counting function of this set is also given.
Mots clés : Partitions, periodic sequences, order of a polynomial, orbits, $2$-adic numbers, counting function, Selberg-Delange formula.
@article{JTNB_2010__22_1_51_0, author = {Ben Sa{\"\i}d, Fethi and Nicolas, Jean-Louis and Zekraoui, Ahlem}, title = {On the parity of generalized partition {functions,~III}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {51--78}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.704}, zbl = {1236.11088}, mrnumber = {2675873}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.704/} }
TY - JOUR AU - Ben Saïd, Fethi AU - Nicolas, Jean-Louis AU - Zekraoui, Ahlem TI - On the parity of generalized partition functions, III JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 51 EP - 78 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.704/ DO - 10.5802/jtnb.704 LA - en ID - JTNB_2010__22_1_51_0 ER -
%0 Journal Article %A Ben Saïd, Fethi %A Nicolas, Jean-Louis %A Zekraoui, Ahlem %T On the parity of generalized partition functions, III %J Journal de théorie des nombres de Bordeaux %D 2010 %P 51-78 %V 22 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.704/ %R 10.5802/jtnb.704 %G en %F JTNB_2010__22_1_51_0
Ben Saïd, Fethi; Nicolas, Jean-Louis; Zekraoui, Ahlem. On the parity of generalized partition functions, III. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 51-78. doi : 10.5802/jtnb.704. http://www.numdam.org/articles/10.5802/jtnb.704/
[1] N. Baccar, Sets with even partition functions and 2-adic integers. Periodica Math. Hung. 55 (2) (2007), 177–193. | MR | Zbl
[2] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on. International Journal of Number Theory 5 n°3 (2009), 407–428. | MR | Zbl
[3] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions. Acta Math. Hungarica 112 (1-2) (2006), 25–37. | MR | Zbl
[4] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions. Journal of Number Theory 95 (2002), 209–226. | MR | Zbl
[5] F. Ben Saïd, On some sets with even valued partition function. The Ramanujan Journal 9 (2005), 63–75. | MR | Zbl
[6] F. Ben Saïd and J.-L. Nicolas, Sets of parts such that the partition function is even. Acta Arithmetica 106 (2003), 183–196. | EuDML | MR | Zbl
[7] F. Ben Saïd and J.-L. Nicolas, Sur une application de la formule de Selberg-Delange. Colloquium Mathematicum 98 n° 2 (2003), 223–247. | EuDML | MR | Zbl
[8] F. Ben Saïd and J.-L. Nicolas, Even partition functions. Séminaire Lotharingien de Combinatoire 46 (2002), B 46i (http//www.mat.univie.ac.at/ slc/). | EuDML | MR | Zbl
[9] F. Ben Saïd, H. Lahouar and J.-L. Nicolas, On the counting function of the sets of parts such that the partition function takes even values for n large enough. Discrete Mathematics 306 (2006), 1089–1096. | MR | Zbl
[10] P. M. Cohn, Algebra, Volume 1, Second Edition. John Wiley and Sons Ltd, 1988). | MR
[11] H. Halberstam and H.-E. Richert, Sieve methods. Academic Press, New York, 1974. | MR | Zbl
[12] H. Lahouar, Fonctions de partitions à parité périodique. European Journal of Combinatorics 24 (2003), 1089–1096. | MR | Zbl
[13] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge University Press, revised edition, 1994. | MR | Zbl
[14] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions. J. Number Theory 73 (1998), 292–317. | MR | Zbl
[15] J.-L. Nicolas, On the parity of generalized partition functions II. Periodica Mathematica Hungarica 43 (2001), 177–189. | MR | Zbl
Cité par Sources :