Symétries spectrales des fonctions zêtas
Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 713-720.

On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant en cohomologie étale. On donne un autre exemple d’accouplement similaire dans le cas de l’interprétation spectrale des zéros de la fonction L d’une forme automorphe cuspidale, mais cette fois-ci de nature orthogonale. Ces constructions sont en adéquation avec les prévisions du programme conjectural de Deninger et de la théorie arithmétique des matrices aléatoires.

      Spectral symmetries of zeta functions

We define, answering a question of Sarnak in his letter to Bombieri [Sar01], a symplectic pairing on the spectral interpretation (due to Connes and Meyer) of the zeroes of Riemann’s zeta function. This pairing gives a purely spectral formulation of the proof of the functional equation due to Tate, Weil and Iwasawa, which, in the case of a curve over a finite field, corresponds to the usual geometric proof by the use of the Frobenius-equivariant Poincaré duality pairing in etale cohomology. We give another example of a similar construction in the case of the spectral interpretation of the zeroes of a cuspidal automorphic L-function, but this time of an orthogonal nature. These constructions are in adequation with Deninger’s conjectural program and the arithmetic theory of random matrices.

DOI : 10.5802/jtnb.697
Paugam, Frédéric 1

1 Université paris 6 Institut de mathématiques de Jussieu 175, rue du Chevaleret 75012 Paris
@article{JTNB_2009__21_3_713_0,
     author = {Paugam, Fr\'ed\'eric},
     title = {Sym\'etries spectrales des fonctions z\^etas},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {713--720},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {3},
     year = {2009},
     doi = {10.5802/jtnb.697},
     zbl = {1214.11095},
     mrnumber = {2605542},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/jtnb.697/}
}
TY  - JOUR
AU  - Paugam, Frédéric
TI  - Symétries spectrales des fonctions zêtas
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2009
SP  - 713
EP  - 720
VL  - 21
IS  - 3
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.697/
DO  - 10.5802/jtnb.697
LA  - fr
ID  - JTNB_2009__21_3_713_0
ER  - 
%0 Journal Article
%A Paugam, Frédéric
%T Symétries spectrales des fonctions zêtas
%J Journal de théorie des nombres de Bordeaux
%D 2009
%P 713-720
%V 21
%N 3
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.697/
%R 10.5802/jtnb.697
%G fr
%F JTNB_2009__21_3_713_0
Paugam, Frédéric. Symétries spectrales des fonctions zêtas. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 713-720. doi : 10.5802/jtnb.697. http://www.numdam.org/articles/10.5802/jtnb.697/

[Arm72] J. V. Armitage, Zeta functions with a zero at s=1 2. Invent. Math. 15 (1972), 199–205. | MR | Zbl

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over Q : wild 3-adic exercises. J. Amer. Math. Soc. 14(4) (2001), 843–939 (electronic). | MR | Zbl

[CCM07] Alain Connes, Caterina Consani, and Matilde Marcolli, The weil proof and the geometry of the adeles class space. ArXiv, (math.NT/0703392) (2007). | MR

[Con99] Alain Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5(1) (1999), 29–106. | MR | Zbl

[Den94] Christopher Deninger, Motivic L-functions and regularized determinants. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 707–743. Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl

[Den98] Christopher Deninger,Some analogies between number theory and dynamical systems on foliated spaces. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), number Extra Vol. I, pages 163–186 (electronic), 1998. | MR | Zbl

[GJ72] Roger Godement and Hervé Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin, 1972. | MR | Zbl

[KS99] Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.) 36(1) (1999), 1–26. | MR | Zbl

[Man95] Yuri Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque 228 :4 (1995), 121–163. Columbia University Number Theory Seminar (New York, 1992). | Numdam | MR | Zbl

[Mey05] Ralf Meyer, On a representation of the idele class group related to primes and zeros of L-functions. Duke Math. J., 127(3) :519–595, 2005. | MR | Zbl

[Mic02] Philippe Michel, Répartition des zéros des fonctions L et matrices aléatoires. Astérisque 282, Exp. No. 887, viii, 211–248, 2002. Séminaire Bourbaki, Vol. 2000/2001. | Numdam | MR | Zbl

[Osb75] M. Scott Osborne, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups. J. Functional Analysis 19 (1975), 40–49. | MR | Zbl

[Ram05] Niranjan Ramachandran, Values of zeta functions at s=1/2. Int. Math. Res. Not. 25 (2005), 1519–1541. | MR | Zbl

[Sar01] Sarnak, Dear Enrico. Letter to Bombieri, pages 1–7, 2001.

[Sou99] Christophe Soulé, Sur les zéros des fonctions L automorphes. C. R. Acad. Sci. Paris Sér. I Math. 328(11) (1999), 955–958. | MR | Zbl

[Wil95] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141(3) (1995), 443–551. | MR | Zbl

Cité par Sources :