Soit un nombre entier positif et le plus grand nombre premier . On considère la suite finie décroissante définie récursivement par , et dont le dernier terme, , est soit premier soit égal à . On note la longueur de cette suite. Nous obtenons des majorations pour ainsi qu’une estimation du nombre d’éléments de l’ensemble des en lesquels prend une valeur donnée .
For every positive integer let be the largest prime number . Given a positive integer , we study the positive integer such that if we define recursively for , then is a prime or . We obtain upper bounds for as well as an estimate for the set of whose takes on a fixed value .
@article{JTNB_2009__21_3_695_0, author = {Luca, Florian and Thangadurai, Ravindranathan}, title = {On an arithmetic function considered by {Pillai}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {695--701}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.695}, zbl = {1201.11092}, mrnumber = {2605540}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.695/} }
TY - JOUR AU - Luca, Florian AU - Thangadurai, Ravindranathan TI - On an arithmetic function considered by Pillai JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 695 EP - 701 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.695/ DO - 10.5802/jtnb.695 LA - en ID - JTNB_2009__21_3_695_0 ER -
%0 Journal Article %A Luca, Florian %A Thangadurai, Ravindranathan %T On an arithmetic function considered by Pillai %J Journal de théorie des nombres de Bordeaux %D 2009 %P 695-701 %V 21 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.695/ %R 10.5802/jtnb.695 %G en %F JTNB_2009__21_3_695_0
Luca, Florian; Thangadurai, Ravindranathan. On an arithmetic function considered by Pillai. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 695-701. doi : 10.5802/jtnb.695. http://www.numdam.org/articles/10.5802/jtnb.695/
[1] R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes - II. Proc. London Math. Soc., (3) 83 (2001), 532–562. | MR | Zbl
[2] H. Cramér, On the order of magnitude of the differences between consecutive prime numbers. Acta. Arith., 2 (1936), 396–403. | Zbl
[3] H. Halberstam and H. E. Rickert, Sieve methods. Academic Press, London, UK, 1974. | Zbl
[4] G. Hoheisel, Primzahlprobleme in der Analysis. Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 33 (1930), 3–11.
[5] T. R. Nicely, Some Results of Computational Research in Prime Numbers. http://www.trnicely.net/
[6] S. S. Pillai, An arithmetical function concerning primes. Annamalai University J. (1930), 159–167.
[7] R. Sitaramachandra Rao, On an error term of Landau - II in “Number theory (Winnipeg, Man., 1983)”, Rocky Mountain J. Math. 15 (1985), 579–588. | MR | Zbl
Cité par Sources :