On an arithmetic function considered by Pillai
Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 695-701.

Soit n un nombre entier positif et p(n) le plus grand nombre premier pn. On considère la suite finie décroissante définie récursivement par n 1 =n, n i+1 =n i -p(n i ) et dont le dernier terme, n r , est soit premier soit égal à 1. On note R(n)=r la longueur de cette suite. Nous obtenons des majorations pour R(n) ainsi qu’une estimation du nombre d’éléments de l’ensemble des nx en lesquels R(n) prend une valeur donnée k.

For every positive integer n let p(n) be the largest prime number pn. Given a positive integer n=n 1 , we study the positive integer r=R(n) such that if we define recursively n i+1 =n i -p(n i ) for i1, then n r is a prime or 1. We obtain upper bounds for R(n) as well as an estimate for the set of n whose R(n) takes on a fixed value k.

DOI : 10.5802/jtnb.695
Luca, Florian 1 ; Thangadurai, Ravindranathan 2

1 Mathematical Institute UNAM, Ap. Postal 61-3 (Xangari), CP 58089 Morelia, Michoacán, Mexico
2 Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad 211 019, India
@article{JTNB_2009__21_3_695_0,
     author = {Luca, Florian and Thangadurai, Ravindranathan},
     title = {On an arithmetic function considered by {Pillai}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {695--701},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {3},
     year = {2009},
     doi = {10.5802/jtnb.695},
     zbl = {1201.11092},
     mrnumber = {2605540},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.695/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Thangadurai, Ravindranathan
TI  - On an arithmetic function considered by Pillai
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2009
SP  - 695
EP  - 701
VL  - 21
IS  - 3
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.695/
DO  - 10.5802/jtnb.695
LA  - en
ID  - JTNB_2009__21_3_695_0
ER  - 
%0 Journal Article
%A Luca, Florian
%A Thangadurai, Ravindranathan
%T On an arithmetic function considered by Pillai
%J Journal de théorie des nombres de Bordeaux
%D 2009
%P 695-701
%V 21
%N 3
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.695/
%R 10.5802/jtnb.695
%G en
%F JTNB_2009__21_3_695_0
Luca, Florian; Thangadurai, Ravindranathan. On an arithmetic function considered by Pillai. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 695-701. doi : 10.5802/jtnb.695. http://www.numdam.org/articles/10.5802/jtnb.695/

[1] R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes - II. Proc. London Math. Soc., (3) 83 (2001), 532–562. | MR | Zbl

[2] H. Cramér, On the order of magnitude of the differences between consecutive prime numbers. Acta. Arith., 2 (1936), 396–403. | Zbl

[3] H. Halberstam and H. E. Rickert, Sieve methods. Academic Press, London, UK, 1974. | Zbl

[4] G.  Hoheisel, Primzahlprobleme in der Analysis.   Sitzunsberichte  der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 33 (1930), 3–11.

[5] T. R. Nicely, Some Results of Computational Research in Prime Numbers. http://www.trnicely.net/

[6] S.  S.  Pillai, An arithmetical function concerning primes. Annamalai University J. (1930), 159–167.

[7] R. Sitaramachandra Rao, On an error term of Landau - II in “Number theory (Winnipeg, Man., 1983)”, Rocky Mountain J. Math. 15 (1985), 579–588. | MR | Zbl

Cité par Sources :