Soit un nombre premier. On dit qu’un corps de nombres satisfait la condition si toute extension abélienne d’exposant divisant possède une base normale d’entiers sur l’anneau des -entiers. On dit aussi que satisfait la condition s’il satisfait pour tout . Il est bien connu que le corps des rationnels satisfait pour les nombres premiers . Dans cet article, nous donnons une condition simple pour qu’un corps de nombres satisfasse en termes du groupe des classes d’idéaux de et d’un “idéal de Stickelberger” associé au groupe de Galois . Comme application, nous donnons un corps quadratique imaginaire qui pourait vérifier la condition très forte pour un petit nombre premier .
Let be a prime number. We say that a number field satisfies the condition when any abelian extension of exponent dividing has a normal integral basis with respect to the ring of -integers. We also say that satisfies when it satisfies for all . It is known that the rationals satisfy for all prime numbers . In this paper, we give a simple condition for a number field to satisfy in terms of the ideal class group of and a “Stickelberger ideal” associated to the Galois group . As an application, we give a candidate of an imaginary quadratic field which has a possibility of satisfying the very strong condition for a small prime number .
@article{JTNB_2009__21_3_589_0, author = {Ichimura, Humio}, title = {Hilbert-Speiser number fields and {Stickelberger} ideals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {589--607}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.690}, zbl = {1205.11119}, mrnumber = {2605535}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.690/} }
TY - JOUR AU - Ichimura, Humio TI - Hilbert-Speiser number fields and Stickelberger ideals JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 589 EP - 607 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.690/ DO - 10.5802/jtnb.690 LA - en ID - JTNB_2009__21_3_589_0 ER -
Ichimura, Humio. Hilbert-Speiser number fields and Stickelberger ideals. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 589-607. doi : 10.5802/jtnb.690. http://www.numdam.org/articles/10.5802/jtnb.690/
[1] J. Buhler, C. Pomerance and L. Robertson, Heuristics for class numbers of prime-power real cyclotomic fields. Fields Inst. Commun., 41 (2004), 149–157. | MR | Zbl
[2] I. Del Corso and L. P. Rossi, Normal integral bases for cyclic Kummer extensions. Preprint, 1.356.1706, Dipartimento di Matematica, Universita’ di Pisa. | MR
[3] A. Fröhlich, Stickelberger without Gauss sums. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 589–607, Academic Press, London, 1977. | MR | Zbl
[4] A. Fröhlich and M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl
[5] E. J. Gómez Ayala, Bases normales d’entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux, 6 (1994), 95–116. | Numdam | MR | Zbl
[6] C. Greither, Cyclic Galois Extensions of Commutative Rings. Springer, Berlin, 1992. | MR | Zbl
[7] D. Hilbert, The Theory of Algebraic Number Fields. Springer, Berlin, 1998. | MR | Zbl
[8] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field. J. London Math. Soc., 66 (2002), 257–275. | MR | Zbl
[9] H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra, 187 (2004), 169–182. | MR | Zbl
[10] H. Ichimura, On the ring of -integers of a cyclic -extension over a number field. J. Théor. Nombres Bordeaux, 17 (2005), 779–786. | Numdam | MR | Zbl
[11] H. Ichimura, Stickelberger ideals and normal bases of rings of -integers. Math. J. Okayama Univ., 48 (2006), 9–20. | MR
[12] H. Ichimura, A class number formula for the -cyclotomic field. Arch. Math. (Basel), 87 (2006),539–545. | MR | Zbl
[13] H. Ichimura, Triviality of Stickelberger ideals of conductor . J. Math. Sci. Univ. Tokyo, 13 (2006), 617–628. | MR
[14] H. Ichimura, Hilbert-Speiser number fields for a prime inside the -cyclotomic field. J. Number Theory, 128 (2008), 858–864. | MR | Zbl
[15] H. Ichimura, On the parity of the class number of the -th cyclotomic field. Math. Slovaca, 59 (2009), 357–364. | MR
[16] H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor and their application. J. Math. Soc. Japan, 58 (2006), 885–902. | MR | Zbl
[17] I. Kersten and J. Michalicek, -extensions of complex multiplication fields. J. Number Theory, 32 (1989), 131–150. | MR | Zbl
[18] F. van der Linden, Class number computations of real abelian number fields. Math. Comp., 39 (1982), 639–707. | MR | Zbl
[19] L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree. Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 561–588, Academic Press, London, 1977. | MR | Zbl
[20] L. R. McCulloh, Galois module structure of elementary abelian extensions. J. Algebra, 82 (1983), 102–134. | MR | Zbl
[21] L. R. McCulloh, Galois module structure of abelian extensions. J. Reine Angew. Math., 375/376 (1987), 259–306. | MR | Zbl
[22] K. Rubin, Euler Systems. Princeton Univ. Press, Princeton, 2000. | MR | Zbl
[23] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math., 62 (1980/81), 181–234. | MR | Zbl
[24] L. C. Washington, Class numbers and -extensions. Math. Ann., 214 (1975),177–193. | MR | Zbl
[25] L. C. Washington, The non--part of the class number in a cyclotomic -extension. Invent. Math., 49 (1978), 87–97. | MR | Zbl
[26] L. C. Washington, Introduction to Cyclotomic Fields (2nd. ed). Springer, New York, 1997. | MR | Zbl
Cité par Sources :