Nous rappelons quelques constructions fondamentales de la théorie de Hodge
We recall some basic constructions from
@article{JTNB_2009__21_2_285_0, author = {Kedlaya, Kiran S.}, title = {Some new directions in $p$-adic {Hodge} theory}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {285--300}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.671}, mrnumber = {2541426}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.671/} }
TY - JOUR AU - Kedlaya, Kiran S. TI - Some new directions in $p$-adic Hodge theory JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 285 EP - 300 VL - 21 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.671/ DO - 10.5802/jtnb.671 LA - en ID - JTNB_2009__21_2_285_0 ER -
Kedlaya, Kiran S. Some new directions in $p$-adic Hodge theory. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 285-300. doi : 10.5802/jtnb.671. https://www.numdam.org/articles/10.5802/jtnb.671/
[1] J. Bellaïche, G. Chenevier,
[2] L. Berger, Représentations
[3] L. Berger, An introduction to the theory of
[4] L. Berger, Construction de
[5] R. Coleman, B. Mazur, The eigencurve. Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, 1998, 1–113. | MR | Zbl
[6] P. Colmez, Représentations triangulines de dimension 2. Astérisque 319 (2008), 213–258. | Numdam | MR
[7] P. Colmez, Représentations de
[8] P. Colmez, La série principale unitaire de
[9] P. Colmez,
[10] L. Herr, Sur la cohomologie galoisienne des corps
[11] H. Hida, Galois representations into
[12] K.S. Kedlaya, Slope filtrations for relative Frobenius. Astérisque 319 (2008), 259–301. | Numdam | MR
[13] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153 (2003), 373–454. | MR | Zbl
[14] M. Kisin, Crystalline representations and
[15] R. Liu, Cohomology and duality for
[16] J.S. Milne, Arithmetic duality theorems. BookSurge, 2006. | MR | Zbl
[17] J. Pottharst, Triangulordinary Selmer groups. ArXiv preprint 0805.2572v1 (2008).
[18] W. Schmid, Variation of Hodge structure: the singularities of the period map. Invent. Math. 22 (1973), 211–319. | MR | Zbl
[19] C.A. Weibel, An introduction to homological algebra. Cambridge Univ. Press, 1994. | MR | Zbl
Cité par Sources :