Soient un morphisme d’une variété définie sur un corps de nombres , une sous-variété définie sur et l’orbite d’un point . Nous décrivons un principe local-global pour l’intersection . Ce principe peut être vu comme l’analogue dynamique de l’obstruction de Brauer–Manin. Nous prouvons que les points rationnels de ne sont pas soumis à l’obstruction de Brauer–Manin pour l’application puissance sur dans deux cas : (1) est la translatée d’un tore. (2) est une droite and a une coordonnée prépériodique. Un outil principal des preuves est le théorème classique de Bang–Zsigmondy sur les diviseurs primitifs dans les suites. Nous prouvons également des résultats local-globaux analogues pour les systèmes dynamiques associés aux endomorphismes de variétés abéliennes.
Let be a morphism of a variety defined over a number field , let be a -subvariety, and let be the orbit of a point . We describe a local-global principle for the intersection . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of are Brauer–Manin unobstructed for power maps on in two cases: (1) is a translate of a torus. (2) is a line and has a preperiodic coordinate. A key tool in the proofs is the classical Bang–Zsigmondy theorem on primitive divisors in sequences. We also prove analogous local-global results for dynamical systems associated to endomoprhisms of abelian varieties.
@article{JTNB_2009__21_1_235_0, author = {Hsia, Liang-Chung and Silverman, Joseph}, title = {On a dynamical {Brauer{\textendash}Manin} obstruction}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {235--250}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.668}, mrnumber = {2537714}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.668/} }
TY - JOUR AU - Hsia, Liang-Chung AU - Silverman, Joseph TI - On a dynamical Brauer–Manin obstruction JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 235 EP - 250 VL - 21 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.668/ DO - 10.5802/jtnb.668 LA - en ID - JTNB_2009__21_1_235_0 ER -
%0 Journal Article %A Hsia, Liang-Chung %A Silverman, Joseph %T On a dynamical Brauer–Manin obstruction %J Journal de théorie des nombres de Bordeaux %D 2009 %P 235-250 %V 21 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.668/ %R 10.5802/jtnb.668 %G en %F JTNB_2009__21_1_235_0
Hsia, Liang-Chung; Silverman, Joseph. On a dynamical Brauer–Manin obstruction. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 235-250. doi : 10.5802/jtnb.668. http://www.numdam.org/articles/10.5802/jtnb.668/
[1] A. S. Bang, Taltheoretiske Undersogelser. Tidsskrift Mat. 4(5) (1886), 70–80, 130–137.
[2] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of . Ann. of Math. (2) 5(4) (1904), 173–180. | MR
[3] J. Cheon and S. Hahn, The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve. Acta Arith. 88(3) (1999), 219–222. | MR | Zbl
[4] B. Poonen and J. F. Voloch, The Brauer–Manin obstruction for subvarieties of abelian varieties over function fields. Annals of Math., to appear.
[5] L. P. Postnikova and A. Schinzel, Primitive divisors of the expression in algebraic number fields. Mat. Sb. (N.S.) 75(117) (1968), 171–177. | MR | Zbl
[6] V. Scharaschkin, Local-global problems and the Brauer–Manin obstruction. PhD thesis, University of Michigan, 1999.
[7] A. Schinzel, Primitive divisors of the expression in algebraic number fields. J. Reine Angew. Math. 268/269 (1974), 27–33. | MR | Zbl
[8] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes. II. Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 731–737. | MR | Zbl
[9] J. H. Silverman, Wieferich’s criterion and the -conjecture. J. Number Theory 30(2) (1988), 226–237. | MR | Zbl
[10] J. H. Silverman, The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986. | MR | Zbl
[11] M. Stoll, Finite descent obstructions and rational points on curves. Algebra & Number Theory 1 (2007), 349–391. | MR
[12] S.-W. Zhang, Distributions in algebraic dynamics. In Differential Geometry: A Tribute to Professor S.-S. Chern, Surv. Differ. Geom., Vol. X, pages 381–430. Int. Press, Boston, MA, 2006. | MR
[13] K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3(1) (1892), 265–284. | MR
Cité par Sources :