The weight distribution of the functional codes defined by forms of degree 2 on Hermitian surfaces
Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 131-143.

On étudie le code fonctionnel C 2 (X) défini sur une variété algébrique projective X, dans le cas où X 3 (𝔽 q ) est une surface Hermitienne non-dégénérée. Nous donnons d’abord des bornes pour #X Z(𝒬) (𝔽 q ) meilleures que celles connues. Ensuite nous calculons le nombre de mots de code atteignant le second poids. Nous donnons aussi une estimation exacte du troisième poids, une description de la structure géométrique des mots correspondant, ainsi que leur nombre. L’article s’achève par une conjecture formulée sur les quatrième et cinquiéme poids du code C 2 (X).

We study the functional codes C 2 (X) defined on a projective algebraic variety X, in the case where X 3 (𝔽 q ) is a non-degenerate Hermitian surface. We first give some bounds for #X Z(𝒬) (𝔽 q ), which are better than the ones known. We compute the number of codewords reaching the second weight. We also estimate the third weight, show the geometrical structure of the codewords reaching this third weight and compute their number. The paper ends with a conjecture on the fourth weight and the fifth weight of the code C 2 (X).

DOI : 10.5802/jtnb.662
Edoukou, Frédéric A. B. 1

1 CNRS, Institut de Mathématiques de Luminy Luminy case 907 13288 Marseille Cedex 9 - France
@article{JTNB_2009__21_1_131_0,
     author = {Edoukou, Fr\'ed\'eric A. B.},
     title = {The weight distribution of the functional codes defined by forms of degree 2 on {Hermitian} surfaces},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {131--143},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {1},
     year = {2009},
     doi = {10.5802/jtnb.662},
     zbl = {1183.94060},
     mrnumber = {2537708},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.662/}
}
TY  - JOUR
AU  - Edoukou, Frédéric A. B.
TI  - The weight distribution of the functional codes defined by forms of degree 2 on Hermitian surfaces
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2009
SP  - 131
EP  - 143
VL  - 21
IS  - 1
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.662/
DO  - 10.5802/jtnb.662
LA  - en
ID  - JTNB_2009__21_1_131_0
ER  - 
%0 Journal Article
%A Edoukou, Frédéric A. B.
%T The weight distribution of the functional codes defined by forms of degree 2 on Hermitian surfaces
%J Journal de théorie des nombres de Bordeaux
%D 2009
%P 131-143
%V 21
%N 1
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.662/
%R 10.5802/jtnb.662
%G en
%F JTNB_2009__21_1_131_0
Edoukou, Frédéric A. B. The weight distribution of the functional codes defined by forms of degree 2 on Hermitian surfaces. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 131-143. doi : 10.5802/jtnb.662. http://www.numdam.org/articles/10.5802/jtnb.662/

[1] Y. Aubry, M. Perret, On the characteristic polynomials of the Frobenuis endomorphism for projective curves over finite fields. Finite Fields and Theirs Applications 10 (2004), 412–431. | MR | Zbl

[2] R. C. Bose, I. M. Chakravarti, Hermitian varieties in finite projective space PG(N,q). Canadian J. of Math. 18 (1966), 1161–1182. | MR | Zbl

[3] I. M. Chakravarti, The generalized Goppa codes and related discrete designs from Hermitian surfaces in PG(3,s 2 ). Lecture Notes in Computer Science 311 (1986), 116–124. | MR | Zbl

[4] F. A. B. Edoukou, Codes defined by forms of degree 2 on Hermitian surface and Sørensen conjecture. Finite Fields and Their Applications, Volume 13, Issue 3 (2007), 616–627. | MR | Zbl

[5] R. Hartshorne, Algebraic Geometry. Graduate texts in mathematics 52, Springer-Verlag, 1977. | MR | Zbl

[6] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields. (Second Edition) Clarendon Press. Oxford, 1998. | MR | Zbl

[7] J. W. P. Hirschfeld, Finite projective spaces of three dimensions. Clarendon press. Oxford, 1985. | MR | Zbl

[8] G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties. In “Arithmetic, Geometry, and Coding Theory”. (Luminy, France, June 17-21, 1993), Walter de Gruyter, Berlin-New York, 1996, 77–104. | MR | Zbl

[9] I. R. Shafarevich, Basic algebraic geometry 1. Springer-Verlag, 1994. | MR | Zbl

[10] A. B. Sørensen, Rational points on hypersurfaces, Reed-Muller codes and algebraic-geometric codes. Ph. D. Thesis, Aarhus, Denmark, 1991.

[11] P. Spurr, Linear codes over GF(4). Master’s Thesis, University of North Carolina at Chapell Hill, USA, 1986.

Cité par Sources :