Sequences of algebraic integers and density modulo 1
Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 755-762.

Nous établissons la densité modulo 1 des ensembles de la forme

{μ m λ n ξ+r m :n,m},

λ,μ sont deux entiers algébriques de degré d2, qui sont rationnellement indépendants et satisfont des hypothèses techniques supplémentaires, ξ0, et r m une suite quelconque de nombres réels.

We prove density modulo 1 of the sets of the form

{μ m λ n ξ+r m :n,m},

where λ,μ is a pair of rationally independent algebraic integers of degree d2, satisfying some additional assumptions, ξ0, and r m is any sequence of real numbers.

DOI : 10.5802/jtnb.610
Mots clés : Density modulo $1,$ algebraic integers, topological dynamics, ID-semigroups
Urban, Roman 1

1 Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland
@article{JTNB_2007__19_3_755_0,
     author = {Urban, Roman},
     title = {Sequences of algebraic integers and density modulo~$1$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {755--762},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {3},
     year = {2007},
     doi = {10.5802/jtnb.610},
     zbl = {1157.11030},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.610/}
}
TY  - JOUR
AU  - Urban, Roman
TI  - Sequences of algebraic integers and density modulo $1$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2007
SP  - 755
EP  - 762
VL  - 19
IS  - 3
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.610/
DO  - 10.5802/jtnb.610
LA  - en
ID  - JTNB_2007__19_3_755_0
ER  - 
%0 Journal Article
%A Urban, Roman
%T Sequences of algebraic integers and density modulo $1$
%J Journal de théorie des nombres de Bordeaux
%D 2007
%P 755-762
%V 19
%N 3
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.610/
%R 10.5802/jtnb.610
%G en
%F JTNB_2007__19_3_755_0
Urban, Roman. Sequences of algebraic integers and density modulo $1$. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 755-762. doi : 10.5802/jtnb.610. http://www.numdam.org/articles/10.5802/jtnb.610/

[1] D. Berend, Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983), no. 2, 509–532. | MR | Zbl

[2] D. Berend, Multi-invariant sets on compact abelian groups. Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535. | MR | Zbl

[3] D. Berend, Dense ( mod 1) dilated semigroups of algebraic numbers. J. Number Theory 26 (1987), no. 3, 246–256. | MR | Zbl

[4] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1–49. | MR | Zbl

[5] Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802. | MR | Zbl

[6] Y. Guivarc’h and R. Urban, Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171 (2005), no. 1, 33–66. | MR | Zbl

[7] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995. | MR | Zbl

[8] S. Kolyada and L. Snoha, Some aspects of topological transitivity – a survey. Grazer Math. Ber. 334 (1997), 3–35. | MR | Zbl

[9] B. Kra, A generalization of Furstenberg’s Diophantine theorem. Proc. Amer. Math. Soc. 127 (1999), no. 7, 1951–1956. | MR | Zbl

[10] D. Meiri, Entropy and uniform distribution of orbits in 𝕋 d . Israel J. Math. 105 (1998), 155–183. | MR | Zbl

[11] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. | MR | Zbl

[12] R. Mañé, Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer-Verlag, Berlin, 1987. | MR | Zbl

[13] R. Muchnik, Semigroup actions on 𝕋 n . Geometriae Dedicata 110 (2005), 1–47. | MR | Zbl

[14] S. Silverman, On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22 (1992), no. 1, 353–375. | MR | Zbl

[15] R. Urban, On density modulo 1 of some expressions containing algebraic integers. Acta Arith., 127 (2007), no. 3, 217–229. | MR | Zbl

Cité par Sources :