Dans cette courte note, on donne une réponse affirmative à une question d’Ayad posée dans [1].
In this short note, we give an affirmative answer to a question of Ayad from [1].
@article{JTNB_2007__19_3_561_0, author = {Ayad, Mohamed and Luca, Florian}, title = {Two divisors of $(n^2+1)/2$ summing up to $n+1$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {561--566}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.602}, zbl = {1161.11004}, mrnumber = {2388788}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.602/} }
TY - JOUR AU - Ayad, Mohamed AU - Luca, Florian TI - Two divisors of $(n^2+1)/2$ summing up to $n+1$ JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 561 EP - 566 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.602/ DO - 10.5802/jtnb.602 LA - en ID - JTNB_2007__19_3_561_0 ER -
%0 Journal Article %A Ayad, Mohamed %A Luca, Florian %T Two divisors of $(n^2+1)/2$ summing up to $n+1$ %J Journal de théorie des nombres de Bordeaux %D 2007 %P 561-566 %V 19 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.602/ %R 10.5802/jtnb.602 %G en %F JTNB_2007__19_3_561_0
Ayad, Mohamed; Luca, Florian. Two divisors of $(n^2+1)/2$ summing up to $n+1$. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 561-566. doi : 10.5802/jtnb.602. http://www.numdam.org/articles/10.5802/jtnb.602/
[1] M. Ayad, Critical points, critical values of a prime polynomial. Complex Var. Elliptic Equ. 51 (2006), 143–160. | MR | Zbl
[2] Yu. F. Bilu, B. Brindza, P. Kirschenhofer, A. Pintér and R. F. Tichy, Diophantine equations and Bernoulli polynomials. With an appendix by A. Schinzel. Compositio Math. 131 (2002), 173–188. | MR | Zbl
[3] Yu. F. Bilu and R. F. Tichy, The Diophantine equation . Acta Arith. 95 (2000), 261–288. | MR | Zbl
[4] Y. Bugeaud and F. Luca, On Pillai’s Diophantine equation. New York J. Math. 12 (2006), 193–217.
Cité par Sources :